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Abstract: Data management and processing to enable predictive analytics in cyber physical systems1

holds the promise of creating insight over underlying processes, discovering anomalous behaviours2

and predicting imminent failures threatening a normal and smooth production process. In this3

context, proactive strategies can be adopted, as enabled by predictive analytics. Predictive analytics4

in turn can make a shift in traditional maintenance approaches to more effective optimising their5

cost and transforming maintenance from a necessary evil to a strategic business factor. Empowered6

by the aforementioned, this paper discusses on a novel methodology for RUL estimation enabling7

predictive maintenance of industrial equipment using partial knowledge over its degradation function8

and the parameters that are affecting it. Moreover, the design and prototype implementation9

of a plug-n-play end-to-end cloud architecture, supporting predictive maintenance of industrial10

equipment is presented integrating the aforementioned concept as a service. This is achieved by11

integrating edge gateways, data stores at both the edge and the cloud, and various applications,12

such as predictive analytics, visualization and scheduling, integrated as services in the cloud system.13

The proposed approach has been implemented into a prototype and tested in an industrial use case14

related to the maintenance of a robotic arm. Obtained results show the effectiveness and the efficiency15

of the proposed methodology in supporting predictive analytics in the era of Industry 4.0.16

Keywords: Machine learning; predictive maintenance; visualization techniques; data management;17

big data architecture.)18

1. Introduction19

The industrial world is undergoing a shift to industry 4.0, where physical processes merge20

with their virtual counterparts towards increased flexibility and predictability. In this context, data21

acquisition and processing can enable smart functionalities. Data analysis techniques, such as clustering22

and anomaly detection, are used for enabling predictive analytics. Hence, powerful and reliable23

cyber-physical system (CPS) architectures [1] are becoming prominent to effectively analyze such large24
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amounts of data, creating insight into the production process, and, thus, enabling its improvement, as25

well as competitive business advantages.26

The proposed architecture, the “SERENA” system, can identify the symptoms of imminent27

machine failure, through the characterization of the current dynamics of the process/machine using28

data collected from the factory. A scalable and modular approach has been taken in the design of29

the architecture, decoupling the overall design from any specific set of technologies. In particular,30

there have been designed and implemented three different services for enabling predictive analytics,31

including a self-assessment service to automatically detect the drift in the data under analysis and32

trigger the building of a new predictive model, and a data-driven estimation of the remaining useful33

life.34

This prototype has been validated in a real-world scenario involving anomaly detection on a35

robotic axis and concerning the maintenance requirements caused by wrong belt tensioning effect. The36

visualization service enables a real-time data stream and machine visualization, while the predictive37

analytics services generate the estimated remaining useful life (RUL) value, which is consumed by the38

scheduling service to proactively schedule the maintenance activities.39

This paper is organized as follows. Section 2 discusses the state-of-the-art architectures and40

methodologies in the era of Industry 4.0. Section 3 describes the proposed architecture enabling41

predictive maintenance in industrial environments equipped with Internet of Thing devices. In42

addition, Section 4 presents the services of the SERENA system, while Section 5 introduces the43

industrial use case. Section 6 presents some results achieved by exploiting the proposed architecture44

in a robotic industry. Finally, Section 7 draws conclusions and discusses future developments of the45

proposed approach.46

2. Related work47

The expression Industry 4.0 has been minted by research and industrial partners during the last48

decade. In this context, a large variety of studies and research projects have been conducted. [2] shows49

an exemplary case study on big data analytics in industrial production environments. Outcome of50

this is a cross-industry methodology, capable of process improvements with data mining. In [1] a51

distributed system architecture was used to enable predictive maintenance on a self-tuning engine by52

combining dynamic use of different prediction algorithms with data interpretation functionalities to53

allow better understanding by the end user. While in [3] an overview of IoT platforms with applications54

in enhanced living environments and in healthcare systems is given highlighting the applications, the55

challenges, the opportunities of these new technologies.56

The differences between multi-class classifiers and deep learning techniques are discussed in [4].57

A comparative experimental analysis of exploratory techniques was presented in [5]. The scalability of58

big data methodologies is discussed in [6] using an example from the energy domain industry. The59

authors of [7] present a proposal for on-demand remote sensing of data to save network and processing60

capacities by extracting features as soon as possible in the data flow.61

The linking between existing production system, their legacy systems and advanced Internet62

of Things (IoT) technologies is discussed in [6]. For this purpose, virtualization and a cloud-based63

micro-service architecture are key technologies. The topic of distributed micro-service architectures64

for big data applications is also discussed in [8]. Therein, the author describes an approach done65

by the Open Geospatial Consortium (OGC) to process large quantities of data collected by earth66

observation satellites. By bringing micro-services to the place where data is captured and stored67

instead of moving these large quantities of data to one central processing node, unnecessary data68

transport can be significantly reduced. In [9] a scalable full-stack distributed engine tailored to69

energy data collection and forecasting in the smart-city context enabling the integration of the70

heterogeneous data measurements gathered from real-world systems and the forecasting of average71

power demand. Moreover, related to fog computing, in [10] the authors introduce a new architecture72

enabling on-demand computation to offload the computation in the cloud architecture, reducing73
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unnecessary network overhead, by properly selecting the most effective edge devices as computation74

delegates.75

In the context of maintenance strategies, the condition based approach is considered as effective76

[11], but also complex to implement and integrate to a production system [12]. However, the77

determination of the current equipment condition is an important issue in the maintenance process78

chain. Using a combination of raw data and intelligent trend filtering, anomalies can be detected79

in various ways, as discussed in [13]. Usually identified anomalies or the status of machine’s80

degradation are expressed in terms of a machine’s remaining useful life (RUL). In that way, a81

complex statistical analysis is directly mapped to a value with physical meaning for the maintenance82

personnel, responsible for further actions. [14] and [15] explore ways to estimate the RUL and derive83

a detailed maintenance scheduling strategy. It is important to note that to adequately estimate an84

equipment’s condition using raw data as a basis, a dataset of proper quality is necessary. This85

requires data corresponding to both normal and abnormal working conditions. Methods for data86

quality improvements are discussed by the authors of [16]. The authors describe how datasets can be87

visualized, grouped, classified, clustered and evaluated in order to detect and remove outliers.88

This paper extends the work presented in [17] by (i) presenting an up-to-date architecture of89

the SERENA system, (ii) describing in further detail the main components of the predictive analytics90

service, and (iii) providing additional experimental results.91

3. Proposed Architecture92

The SERENA system is built on a lightweight and flexible micro-services architecture as shown in93

Figure 1, with the various applications implemented as independent Docker services. The services are94

integrated to seamlessly support maintenance engineers and personnel by providing the following95

main functionalities: (i) predictive maintenance analytics; (ii) dynamic maintenance scheduling; and96

(iii) assisted plant maintenance, using augmented reality devices. Communications are facilitated97

through a central message broker. With respect to the cloud-based nature of the architecture and its98

services, the SERENA data model is based on a JSON-LD [18] mapping of the MIMOSA XML schema99

[19]. A Docker orchestration layer manages the instantiation and life cycle of the services. The adoption100

of virtualization technologies like Docker, creates an agnostic middle-ware, enabling the SERENA101

system to be deployable on a wide variety of host infrastructures while providing scalability and102

resiliency. The Docker orchestration layer also provides the overlay network that allows the services to103

transparently communicate, irrespective of where they are deployed.104

A standard practice for companies not providing IT products or services, is renting cloud space105

and web servers to avoid the related capital and maintenance cost, it is obvious that production106

equipment and sensors are in a distance to the actual rented cloud infrastructure. With respect to107

the aforementioned, the SERENA architecture extends the IoT cloud concept to directly include108

these devices. This is accomplished by wrapping the edge applications as Docker services, and109

managing their deployment and lifecycle from the Docker swarm as docker workers or managers in110

case of a complex swarm(s). This in turn can enable workload balancing in terms of deploying and111

executing docker applications to the appropriate network nodes, as well as managing the activation112

or deactivation of additional services at a certain node. In case of network bandwidth or latency113

constraints, the service can be moved to the edge of the cloud to analyze and convert the raw data into114

features, at source; alternatively, if high performance compute resources are required, such as tensor115

processing units (TPUs) for training machine learning (ML) models, services can be run on the central116

cloud infrastructure or in remote public clouds. Thus, the SERENA architecture considers both cloud117

and edge nodes, all being part of the same hybrid SERENA cloud system, centrally and holistically118

managed as one or more Docker swarm service network.119

In the context of the SERENA project, a specific gateway has been designed and developed based120

on an Intel NUC, which has 8 GB of RAM and an Intel i5, as well as some analog inputs. The edge121

component, referring to an edge gateway (hardware and software) allows building real-time streaming122
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Figure 1. The SERENA Architecture

applications, that reliably collects data among different heterogeneous systems or applications and123

transforms or reacts to the streams of data collected in the plant. It can scale in both data size and124

velocity. The edge gateway is located on the factory floor collecting sensor data coming from industrial125

equipment as well as context information and the operating condition of the equipment. It includes126

the following key functionalities:127

• The data flow engine, managing the data streams128

• A feature engineering component pre-processing incoming raw data into values that are of grater129

meaning for the predictive analytics, such as the current average/rms value instead of simple130

amplitude.131

• The rules for performing the aforementioned pre-processing132

• A pre-trained predictive analytics model providing real time predictions/classifications133

All components are deployed as docker containers under the control of a docker orchestration manager.134

Wrapping edge functionalities as docker services gives the system the flexibility to execute the135

application workloads wherever it makes the most sense: if there are network bandwidth or latency136

constraints, the service can be moved to the edge of the cloud to analyze and convert the raw data into137

feature engineering, at source; alternatively, if high performance computing resources are required,138

such as tensor processing units (TPUs) for training machine learning (ML) models, services can be run139

on the central cloud infrastructure or in remote public clouds.140

The SERENA system has been designed and implemented aiming to be technology independent.141

The reason being is to allow any integrator or developer to customize it and tailor its reference142

technologies depending on a case specific technology limitations. Whilst a reference architecture and143

implementation are provided, the system has been designed in such a way as to give the developer the144

freedom to choose the technologies that conform to their own corporate guidelines or meet specific145

implementation challenges.146

In particular, the technologies used for implementing the SERENA system during the proof of147

concept stage along with the data storage mechanisms are transparent to the other services. Thus,148

older technologies can be swapped for newer more powerful ones, without having to rebuild the entire149

system. As an example, the preferred data storage platform is HDFS [20], but other databases, such as150

Cassandra [21], may be preferred in specific cases.151
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4. Services152

The architecture presented in the previous section has been designed to enable predictive analytics153

of industrial equipment. Towards that, a set of application services has been integrated. In the following154

sections the main services are presented in greater detail.155

4.1. The predictive analytic service156

A general-purpose service suited to fulfill the condition monitoring and maintenance needs of157

modern companies in the context of industry 4.0 is proposed. The architecture of the analytical service158

proposed in this research, reported in Figure 2,159

is flexible and it can be customized for any other use cases of interest (e.g., [22]). The service is160

based on four main steps: feature engineering, predictive analytics, model validation, self-assessment.

Figure 2. Analytic architecture
161

Feature engineering. Industrial sensors monitor many production processes, that are usually162

repeated periodically and characterized by a specific duration. The feature engineering component163

is in charge of transforming and processing raw sensor data to extract the main features describing164

the signals. They are identified at the first stages of the raw data analysis process (i.e. clustering,165

correlation analysis, PCA, other) and implemented at a latter stage to reduce the amount of data166

communicated from the edge to the cloud. Specifically, each monitored cycle is divided in several167

segments over the time domain, to better extract the variability separately for each sub-cycle. Each168

segment is thus characterized by many statistical features (e.g. mean, standard deviation, quartiles,169

kurtosis, skewness, root mean squared error, sum of absolute values, number of elements over the170

mean, absolute energy, mean absolute change). These features are then used by the other steps of the171

analytical process to predict the outcome for each cycle.172

Since the great number of computed statistical features, it is possible that the time domain feature173

computation step produces a huge number of attributes and that, in some cases, this can affect the174

performance of the successive analysis. However, since it is possible that some features are highly175

correlated with some others in the dataset, the information gained by these attributes could be176

redundant and it can possibly produce noise in the model building phase. Thus, to select the features177

that contain the most valuable information, the analytics engine includes a feature selection technique178

based on the Pearson correlation test [23]. Computing the correlation of each couple of attributes and179

removing those that are correlated the most, on average over all the (other) attributes, it is possible180

to identify which are the attributes that can be discarded without losing any accuracy in the model181

construction.182

Predictive analytics. The predictive analytics block has the role to learn from the historical dataset183

and build a prediction model, to forecast the correct label for new incoming sensor data in the real184

time prediction phase. The model building process exploits a training phase necessary to extract the185

latent relations which exist between an historical set of signals and its labels (events to predict). The186
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information contained in the features is analyzed by different scalable and transparent classification187

algorithms, available in the Apache Spark framework [24,25]: (i) Decision Tree [26] (DT) , (ii) Random188

Forest [27] (RF), (iii) Gradient Boosted Tree [28] (GBT). The chosen classification algorithms have189

been specifically picked-up for their interpretability: domain experts can indeed easily understand190

and inspect the main relationships between the input data and the outcome of the predictions. Once191

the model is built, the labels (and the probability to belong to a specific label) for new incoming192

sensors data can be forecasted by the real time prediction. The trained model is pushed down to the193

edge to fulfill the need for short response time of the predictive models, in order to enable in-time194

corrective/preventive actions to take place on the shopfloor. Also for safety reasons for the human195

personnel as well as for preventing any robot/machine damage, that would be associated to additional196

expenditures. This would need a pre-trained model deployed close to the robot, getting data and197

processing in short time, providing results easy to understand and interpret by the human(s) in close198

proximity outputs.199

Model validation. The performance of the predictive model built in the previous step has to be200

evaluated by the Validation block. In such phase, all the trained classification models are validated201

using the Stratified K-Fold Cross validation strategy and the values of precision, recall and f-measure202

are calculated for each class of interest. This step is necessary to understand which algorithm better203

fits the requirements of the given classification task (i.e. have higher values for the f-measure and the204

other metrics). The indexes computed to evaluate the training of the model require the information205

of the real class of the test data, namely a subset of labeled data kept apart during the training phase206

through a certain sampling strategy. Because of this reason, these approaches are not eligible to be207

used to evaluate the model performances on unlabeled data over time.208

Self-assessment. It is common, especially in industrial production environments, that the nature209

of the collected data changes over time due to equipment degradation, the adoption of new machinery210

or to some environmental factors. The Self-assessment phase allows to identify if, due to changes in211

the production environment or in case of new labels not included in the dataset, the predictive model212

performance has degraded and so decides whether to trigger the update and retrain of model with213

newly arrived data.214

The main idea behind the self-assessment approach is to exploit the changes in the geometrical215

distribution of the data over time to identify when the predictive model is no more performing216

as expected. Moreover, in real use cases, the ground truth label is often not available, thus, only217

unsupervised techniques can be exploited. The proposed methodology exploits a new, scalable version218

of a well known unsupervised index able to measure the intra-cohesion and inter-separation of clusters219

of data along. The exploited metric is the Descriptor Silhouette (DS) index proposed in [29]. It provides220

an approximated estimation of the Silhouette index. The DS index ranges in [−1, 1], as the standard221

Silhouette index, where -1 represents a point that is distant from the distribution of the points to which222

it is assigned (bad assignment), while 1 describe a well assignment for the point in exam. Each record223

in the dataset is characterized by a DS score each time the self-assessment is executed, producing a224

Silhouette curve. Given a dataset characterized by class labels, it is possible to measure the cohesion225

and the separation of the data, before and after the collection of new incoming data. It has been proved226

experimentally that a variation of the geometric distribution of the incoming data w.r.t. the historical227

data corresponds to the presence of new unknown data. Then, the self-assessment service produces a228

measure of the percentage of degradation of the predictive model performance given by the following229

relation:230

DEG(c, t) = α ∗MAAPE(Silt0 , Silt) ∗
Nc

N
(1)

The degradation is calculated for each class c learned by the predictive model and at specific231

timestamp t. The degradation is obtained calculating the Mean Arctangent Absolute Percentage Error232

(MAAPE) [30] between the DS curve calculated with the training data and the DS curve calculated233

with all the data collected until time t. This error is then weighted by the number of points predicted234
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to belong to class c (Nc) w.r.t. the cardinality of the whole dataset (N). The coefficient α instead, give235

the sign to the degradation, describing if the mean silhouette is increased (negative sign) or decreased236

(positive sign), after the arrival of new unknown data. A positive sign of α represents a lower cohesion237

in the data, since the mean silhouette after the arrival of new data is lowered and thus the degradation238

is increased (the degradation is positive).239

Remaining Useful Life estimation.240

A widely used indicator in industry about the condition of its assets is the Remaining Useful Life241

(RUL). The RUL of an asset can be defined as the time left to the end of its expected operational life and242

as it regards the functionality for which it was purchased for. The same asset operating under different243

conditions can be characterised by different degradation level, and as a result varying RUL values at244

the same point of time. As a consequence, the creation of a generic model, statistical or otherwise, for245

estimating the RUL value is extremely challenging if at all feasible [31]. Nevertheless, the accurate246

estimation of the RUL value is a key component towards enabling predictive maintenance of a system.247

Thus, several efforts are underway to provide a solution to this problem. However, state-of-the-art248

algorithms, such as liner regression models, Hidden Markov Models, or Long Short-Term Memory249

Neural Networks, require extensive and complex modelling and training to estimate the RUL value,250

with limited efficiency.251

To that end and towards overcoming the aforementioned limitations, this work proposes a novel252

methodology for RUL estimation. In particular, data collected out of different phases of an asset253

operational life are used to model its behavior at specified and labelled timestamps and support the254

identification of deviations from its nominal or ideal operational profile and other as well labelled255

profiles. More specifically, data acquired at the deployment of an asset on a shop floor can be considered256

as an ideal operational profile from which degradation starts to gradually deteriorate its operational257

behavior. Afterwards and during its usage for production purposes, data are used to estimate the258

deviation from this nominal profile. The distribution of the nominal set of key variables is calculated.259

Then the probability of each selected variable to belong to the nominal distribution is estimate using260

the Gaussian kernel density estimation [32]. This probability representing the deviation of the two261

profiles can then be associated to the RUL indicator or similar, facilitating its estimation. The lower is262

the probability of each selected variable to belong to the data distribution of the correct functioning of263

the machinery, the faster is the degradation of object functionality, thus the lower is the RUL.264

It should be mentioned that the set of selected as important variables for the aforementioned265

analysis can either be a-priori known, based on existing engineering/production knowledge or266

identified during the course of the data analysis by extracting features that may be used for pattern267

recognition and anomaly detection enabling in turn predictive maintenance activities. Afterwards,268

as the degradation level of the monitored equipment increases a drift from the initial distribution is269

detected, that can be associated to a decrease in the value of the RUL indicator. The deviation from270

the nominal profile or "distribution drift" is evaluated through the self-assessment service and for the271

selected features.272

Hence, the estimation of the RUL value in the context of SERENA and as presented in this work273

relies upon two main factors: (1) the joint probability of the selected features with respect to their274

nominal profile or distribution, and (2) the presence of probability drifting in the collected data over275

time. Both factors consist functions of time t. At a random time t, the percentage of the RUL value can276

be defined as follows:277

RUL(t) =
1

Nt

X(t)

∑
x

(
(100− DEG(t))

S

∏
s

P(xs ∈ K(Xs(t0))

)
(2)

where278

• X(t0) refers to the set of historical data collected from the the beginning of the operational life to a279

time t0 corresponding to the nominal or ideal operational profile of the asset under consideration,280

• X(t) refers to the new data collected from t0 to time t,281
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• Nt corresponds to the number of new signals collected up to time t,282

• S is the set of relevant features for characterizing the degradation level of the asset,283

• K(Xs(t0)) denotes the distribution of the feature s ∈ S estimated from the historical data X(t0),284

• P(xs ∈ K(Xs(t0)) refers to the probability of feature s as estimated out of a new set of data x to285

belong in the distribution K(Xs(t0)),286

• DEG(t) is the overall degradation estimated by the data collected from t0 to t as measured out of287

the Equation 1.288

As a result, the equation 2 estimates the percentage of RUL as a function of time by calculating the289

mean of the joint probabilities of each selected feature to belong to the ideal or nominal operational290

distribution, for each incoming set of data, weighted by 100 minus the percentage reflecting the291

probability drift at a time t. The contribution of the drifting probability is calculated as 100 minus292

the percentage of degradation, reflected in the collected data, since an opposite analogy is considered293

between the RUL and the drift values.294

Using the aforementioned concept as a basis, the SERENA system is able to estimate the RUL295

value of an asset, machine, robot, other. Moreover, considering a human-centered cyber physical296

production system, the proposed approach supports its customised tuning and configuration by the297

human user towards addressing different scenarios and assets. It should be noted that an important298

aspect of the presented approach and as part of the implemented SERENA system, is the knowledge299

of the domain expert for configuring the system and identifying the relevant or important features for300

the analysis. This knowledge is considered as part of the experience acquired during production and301

not knowledge that an equipment manufacturer could provide, unless monitoring the asset during its302

operational lifetime.303

In addition the proposed RUL estimation approach supports the correlation to the drift measured304

by 1 to unknown or unmodelled knowledge collected over time through the analysed features. This305

phenomenon is considered to represent degradation that cannot be effectively modelled due to its306

complexity and unknown correlation to the known asset variables and monitored characteristics.307

4.2. The scheduling service308

The result of the aforementioned predictive analytics service, a forecasted failure time horizon, is309

consumed by a scheduling service [33]. The aim of the service is to prevent the predicted failure, by310

assigning the required maintenance activities to operators within the given time-frame. This service311

can be extended to consider the current production plan, hence fitting the maintenance activities within312

a given time slot to optimize production outputs.313

The scheduling service has been implemented in Java following a client-server model. The314

service inputs include the monitored equipment, RUL value, maintenance tasks, including precedence315

relations and default duration per operation experience, and a number of potential operators with their316

characteristics, such as experience level. The server side includes a multi-criterion decision making317

framework, evaluating the alternative scheduling configurations, ranking them and selecting the318

highest ranked one. The client side communicates with the server side via restful APIs, supporting319

editing of tasks, resources, equipment, time series visualization, and process plan Gantt visualization.320

The process time required to create a new schedule depends on the complexity of the schedule,321

referring to the number of tasks, resources, and their dependencies, along with the evaluated criteria.322

4.3. The visualization service323

The aim of the visualization service is to present the data, coming from the manufacturing324

process, in an effective and intuitive manner. It is an essential support for the maintenance engineers,325

giving them the opportunity to evaluate the status of the remote manufacturing process, and to the326

maintenance operator, who is responsible for performing the maintenance activity.327

The visualization service can be considered as a set of information pages that integrate data and328

plant information coming from the manufacturing process, with the results of the predictive analysis.329
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To effectively present real-time errors and predictions to the user in an intuitive way, the service330

uses a simplified, but realistic, 3D representation of the machinery. In addition, the user can display331

maintenance guidance and information pertaining to the mechanical and electrical components of the332

machine.333

A Unity application that provides a real-time animation of the RobotBox 3D model via a web334

browser has been designed and developed. The live animation of the 3D model is achieved through a335

real-time data feed from the RobotBox controller, and the predictive information and machine status336

is obtained from the other SERENA services. The status of the component of interest is highlighted337

on the 3D model, along with its RUL. The 3D Virtual Procedure is an animated step-by-step guide,338

which shows the correct procedure to perform the maintenance operation. The concept is to evolve339

the typical text-based maintenance manual into an interactive 3D maintenance visualization, and so340

collaboratively guide the operator through the maintenance procedure.341

The visualization service is also charged to show to the end user the information produced by the342

analytic services. The visualization service and the analytic services communicate through RESTFUL343

APIs, enabling also the monitoring of the performance for the predictive models used in the production344

environment. The monitoring of the predictive models performance, as explained in previous sections,345

is an important activity that should be always taken into account when dealing with real applications.346

The visualization service enable the access to the information related to this task simplifying the347

understanding by non-expert users and the reliability of the models in production environments.348

The information about the predictive model performance are showed in an interactive dashboard. The349

dashboard reports the precision and the recall information for the predictive model in production.350

Moreover, the dashboard shows an interactive section that exploits bar charts to describe the351

degradation of the model performance over time, for each learned class. The user can interact with the352

dashboard to see the details about the degradation at a specific timestamp. For the selected timestamp353

and for each learned class, the dashboard shows the silhouette lines produced by the self-assessment354

service though an interpolated scatter plot.355

More dashboard details are reported in Section 6-Self-assessment.356

4.4. Cloud management and communication services357

The cloud management and communication services provide the base functionality that358

implements the SERENA system.359

Docker orchestrator service. The orchestrator controls the deployment and manages the life cycle360

of all services in the SERENA cloud. It ensures that the services are running and will redeploy them if361

part of the underlying infrastructure fails. Critical services, such as the central message broker, are362

deployed as resilient and scalable service clusters. The SERENA system implements its own local363

image registry, where the service images are stored. Running a local image registry reduces the security364

risk of directly accessing an Internet Docker registry, and ensures that the required images are always365

available from a trusted source.366

As the edge gateways are part of the SERENA cloud, the orchestrator can automatically deploy367

services all the way to the edge. The analytics models are periodically retrained in the cloud, then368

wrapped as a Docker service and deployed to the gateways. The specific manufacturing process that369

the gateway supports is configured via the orchestrator using function description labels. Based on the370

labels the orchestrator will automatically deploy the correct services to the gateway.371

Edge gateway services. The edge gateways collect and analyze raw sensor data from the372

manufacturing process, and are fully integrated parts of the SERENA cloud. Typically, two types373

of service are deployed to the gateway: a data flow engine and a pre-trained data analytics or374

predictive analytics . The data flow engine, based on Node-RED [34], collects raw sensor data from the375

manufacturing process and passes it to the analytics service. The analytics service converts the raw376

time series data into features and encoding them into JSON-LD. JSON-LD is an extension of JSON that377

supports Linked Data, which allows data and metadata to be combined into a single context. The data378
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flow engine then forwards the JSON-LD to the central message broker for distribution to the other379

SERENA services. Regarding predictive analytics, the gateway represents a core component since380

it allows to fulfill different use case requirements and/or constraints. In case of low latency is not381

needed in prediction (as is required in case of mechanical reaction in the actual process) or analytics382

algorithms require a huge amount of historical data which does not fit in the gateway storage; we383

can both train and execute predictive algorithms in the cloud in order to better optimize hardware384

resources and not overload equipment close to production. Otherwise, if the application requires to385

have the results of analytics services with high-performance constraints, the SERENA architecture386

offers a mechanism to deploy to the local gateway a model, trained in the cloud, whose output could387

be used in near real-time applications to easily perform the prediction.388

Central message broker service. The central message broker service is the main communication389

hub of the SERENA system. To ensure its scalability and high availability, it is deployed as a resilient390

Docker cluster service. The broker exposes REST, MQTT and web service endpoints, which distribute391

messages between the cloud services and the edge gateways. In addition, the broker is intended to392

act as the access point for external facilities. Security is an important feature of the SERENA system,393

and the broker, as the communications hub, provides secure channels between the gateways and394

cloud services. It also validates the authenticity of incoming messages, and whether the requester is395

authorized to use the requested service.396

Repository services. The SERENA architecture provides a number of repositories which hold397

various types of data used by the system, including the features and raw data repositories as well398

as maintenance manuals, data artefacts and information required by other SERENA services, such399

as maintenance tasks for the scheduler. The raw data repository is used for training the predictive400

analytics models. In addition, a metadata repository is included for storing contextual information401

connecting distributed stored and collected data. The repositories are implemented as stateless Docker402

services, the state being stored in external virtual volumes. Implementing the repositories as stateless403

services, enables a plug-n-play and dynamic deployment like the other services in the system.404

5. Use case description405

Given the high throughput of automation lines and the great number of robots involved in406

production, a common issue is the robot belts, working continuously for days at high cycles per minute407

ratios, suffering tensioning problems. The belts are used as transmission for the robot axes, and setting408

the tension is crucial for obtaining high levels of performance and precision.409

In factory plants, preventive maintenance policies are used to avoid production stops. Hence, the410

acquisition and analysis of failure data for predictive analytics is a challenge. To overcome the lack of411

failure data, since it would have been too complicated and expensive to manipulate an entire robot, a412

test-bed (Figure 3) has been created, the RobotBox. The RobotBox is made of a motor equipped with413

an encoder (to read the actual motor axis position), a belt, a gearbox reducer, and a 5 kilos weight to414

simulate an actual robot application. All components have been taken from a six axis industrial robot.415

The decision to build the test-bed (RobotBox) instead of using an entire robot is not only due to the416

cost. Indeed, this simplification allows to better isolate the system from environmental factors such as417

weight of the links, inertia, vibration and so on. Thus, using the RobotBox allows to collect less noisy418

data and generalize the knowledge acquired to the entire robot axes.419

In order to create a high quality dataset, changing the belt tension levels in a reproducible manner420

was necessary. Hence a slider was installed allowing a continuous change of the tension and a421

centesimal indicator, to measure the belt tensioning with respect to a pre-configured position. The422

distance between the gearbox and the motor is proportional to the belt tensioning.423

In this work, only the current (in Amperes) used by the RobotBox motor is taken into account and424

used as input for the analytic component. The current is tracked by the RobotBox controller every 2425

milliseconds. Nevertheless, future works will consider fusing data of different sources.426
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Figure 3. RobotBox components.

The gateway collects data from the RobotBox and pre-processes the data in order to extract feature427

engineering for the analytics. The results of this processing step enriched by the result of already428

deployed analytics models, remaining useful life or otherwise, is transmitted afterwards to the cloud429

node as a JSON file. Currently and for the use case presented in this work, almost 1 GB of data are430

collected and transmitted per day, including raw data, extracted features and analytics results of431

already deployed at the gateway models. Nevertheless, depending on the application, it is could be432

sufficient to collect a smaller dataset with a greater time window.433

Regarding the computational power and the bandwidth, the most impacting process is the434

prediction of the status of the machine, which is performed in runtime and at the gateway level. The435

response time, hence the hardware setup requirements in terms of connectivity, data transmission and436

processing/storage power, for the use case under discussion is expected to be within some minutes.437

This is addressed by the aforementioned setup. More complex and time or resources consuming438

analyses including the training and testing of new predictive models with new datasets as collected439

through time, takes place at the cloud and when a new model is created this replaces the one deployed440

at the gateway.441

6. Experimental setting and results442

In this section the experimental setting and results related to the predictive analytics service are443

discussed in order to demonstrate its ability in correctly performing the prediction on real data. The444

analytics service, including both the model building phase and the real-time prediction, has been445

developed on the top of the big-data analytic framework Apache Spark [24], along with the scalable446

machine learning library MLLib [25]. The effectiveness of the proposed methodology is validated447

through a set of experiments, all performed on a Intel i7 8-cores processor workstation, with a 32GB448

main memory.

Figure 4. Samples of electricity consumption for different tensioning values.
449
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Table 1. Tension level dataset.

Classes # of cycles Dataset %

0 5,952 35.30%
1 1,591 9.44%
2 1,937 11.70%
3 3,174 18.82%
4 4,172 24.74%

Total cycles 16,862 100%

Figure 5. Sample current signal collected from the RobotBox with the segments highlighted.

Using the slider installed on the RobotBox, 5 different classes of tensioning have been defined:450

classes 0 and 1 refer to low tensioning, class 2 to correct tensioning and classes 3 and 4 to high451

tensioning. Figure 4 shows an example of the current amplitudes values in Ampere for different level452

of tensioning. Table 1 shows the number of cycles in the dataset under analysis, divided by class.453

From the experimental results, the analytic service presented in section 4.1 turns out to be454

effective in predicting the class relative to the belt tensioning values given measurements of the current455

amplitude.456

Features computation. Each incoming motor current signal has been divided into 24 segments457

(Figure 5 shows the segments over a sample signal collected from the RobotBox use case), and each458

segment has been characterized by statistical features (e.g. mean, std, quartiles, Kurtosis, skewness),459

for a total of 350 features.460

Features selection. Then, through the correlation test, the number of features is reduced choosing461

a proper threshold. From this step both the performance and quality of the predictive model will462

be affected. Figure 6 shows the f-measure obtained without the feature selection step and with two463

different thresholds for the correlation test, 0.3 and 0.5. From the image it is clear that the threshold464

of 0.5 is outperforming the other two options with all the tested classifier while demonstrating the465

effectiveness of the proposed feature selection strategy.466

467

Predictive analytics. The service performs a grid search over three different algorithms available468

in the MLLib library: Decision Tree (DT), Gradient Boosted Tree (GBT), Random Forest (RF). Each469

tested configuration has been validated performing a 3 fold cross-validation.470

Table 2 shows the performance for each class of the tested classifiers after the grid-search with the471

stratified k-fold cross-validation. The grid-search has been performed to analyze an exhaustive range472

of algorithm configurations including the max-depth of the trees ranging in {10, 25, 50, 100, 250, 500}473

and the number of estimators ranging in {10, 25, 50, 100, 250, 500} (just in case of RF). Based on the474

grid-search results, the proposed approach automatically selects the Random Forest (RF) configured475

with max_depth:10 and n_estimators:250 showing better results for all the classes in term of precision,476

recall and f-measure. RF and GBT have similar performances despite class 4 where RF is performing477

slightly better. Table 3 shows the top 10 important features for the RF model along with their feature478

importance values calculated accordingly to [35]. Feature names are composed by the name of the479

statistics and the segment identifier on which they have been calculated with the following format:480

<name_of_the_statistics>-<segment_id>. From the feature importance it is possible to notice that the481
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Figure 6. Average f-measure for the different classifiers.

Table 2. Classification results, correlation threshold 0.5.

Classifier Class Precision Recall F-measure

RF 0 0.99 0.99 0.99
RF 1 0.99 0.99 0.99
RF 2 0.99 0.99 0.99
RF 3 0.98 0.96 0.97
RF 4 0.84 0.93 0.85

GBT 0 0.99 0.99 0.99
GBT 1 0.99 0.99 0.99
GBT 2 0.99 0.99 0.99
GBT 3 0.98 0.96 0.97
GBT 4 0.83 0.89 0.82

DT 0 0.99 0.99 0.99
DT 1 0.98 0.96 0.97
DT 2 0.99 0.95 0.97
DT 3 0.97 0.86 0.90
DT 4 0.70 0.92 0.72

most frequent statistical feature exploited by the RF model is the mean of the absolute change (i.e.,482

the mean of the numerical differences between each couple of consecutive values in the segment)483

calculated in the first part of the input signals (segments 1, 4, 5, 6 and 10 in Figure 5). Also segment 1484

(i.e., at the beginning of the cycle in the acceleration phase) appears three times and segment 10 (i.e.,485

the brake phase before idle phase) two times in the top ten features meaning that these segments are486

relevant for the prediction process. The best model is then saved on HDFS or deployed on the edge487

enabling the real-time prediction step to be available both on the cloud or on premises.488

In case of high performance constraints of the production environment, the model, trained on the489

cloud, can be deployed directly to the edge gateway. In this case the latency of the predictive analytics490

can be drastically reduced.491

In the actual real case scenario, the edge gateway maintains a queue of incoming current signals and492

runs the edge prediction service that performs both the features computation and the prediction for493

each new incoming signal. The current implementation of the prediction service on the edge is able to494

perform the above two tasks (i.e., feature computation and real-time prediction) for multiple incoming495

signals, parallelizing the tasks through a local deployment of the same spark service available in the496

cloud. However, to test the latency of the predictive analytic service deployed on the edge a dual core497

gateway with 4GB of ram has been exploited receiving a flow of 1000 RobotBox signals in sequence.498

To assure its performance a sequential scenario has been simulated in which signals are evaluated499
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Table 3. Feature importance for the top 10 features extracted from the best RF model trained by the
predictive analytics service.

Feature name Importance
skewness-1 0.048

mean_abs_change-6 0.048
mean_abs_change-1 0.045
mean_abs_change-5 0.044
mean_abs_change-4 0.040

mean_abs_change-10 0.038
kurtosis-3 0.030

mean_abs_change-7 0.029
kurtosis-1 0.023

third_quartile-10 0.023

in sequence one by one with no delay between each other. The edge prediction service reached, in500

the sequential scenario, an average computation time of 2.73 seconds with a standard deviation of501

0.36. Considering that a robot cycle in the RobotBox use case lasts around 24 seconds, the performance502

reached by the edge prediction service are more than sufficient to have a real-time answer.503

Self-assessment. The self-assessment service provides information about the reliability of the504

model, built on the historical data, over time.505

To better evaluate the proposed approach, a model considering only the classes of data that506

usually are known by the domain experts has been generated. This is a likely assumption from the507

moment that usually, and especially in industrial use cases, for a given machinery, only some behaviors508

are known. Indeed, monitoring the malfunctioning of a machinery is a difficult task, since having a509

complete description of all the possible wrong behaviors is very complex: this motivation supports the510

role of this service in the SERENA cloud.511

To assess the effectiveness of this service a model has been trained on the tension level dataset512

exploiting only the elements of classes 2 and 4 since they are supposed to be the known classes at513

training time. Then, a flow of new incoming data has been simulated exploiting the remaining classes514

in the dataset i.e. classes 0, 1 and 3. The test dataset has been injected in the SERENA platform and the515

self-assessment service has been triggered at specific timestamps. The test trigger’s timestamps has516

been measured in number of incoming samples to keep the analysis time independent and process517

independent.518

For this reason, the self-assessment service has been triggered following the pattern in Table 4. The519

cardinality of the data used to train the predictive model is reported in column Training (t0), then, for520

each timestamp (tn) the number of record for each class label injected is reported. Row New data %521

shows the percentage of data that is new w.r.t. the data used to train the model, while row Drift %522

reports the percentage of drift included at each timestamp.523

From Table 4 it is possible to notice that from time t1 to time t5 only data from known classes have524

been injected, then, starting from time t6, class 0 is injected, followed by class 1 (from time t8) and then525

by class 3 (from time t9).526

The graphs in Figure 7 are extracted from the SERENA dashboard. They show the degradation of the527

model trained on classes 2 and 4 over time. Figures 7a and 7b show the percentage of degradation528

measured by the self-assessment cloud service. From the charts it is possible to notice that until time t5529

no degradation occurs, reflecting what expected from the injection pattern: only data with a known530

distribution has been collected by the system and the performance of the model remains unchanged.531

Then, at time t6 class 0 starts to be recorded by the system, however, this data has an unknown532

distribution to the model under analysis, since class 0 was not present in the training dataset. At time533

t6 the self-assessment service shows a clear degradation of model performance, correctly identifying534

the presence of the new unknown distribution of data. The degradation then, continue to increase535

until time t10 correctly identifying the increasing of the drift with the new incoming data.536
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In particular it is possible to notice from Figure 7a that label 2 is the class mostly affected by the537

presence of concept drift, while label 4 is slightly affected only when new data belonging to the538

unknown labels 1 and 3 are injected in the system.539

Thus, the self-assessment service allows to correctly detect per-class predictive model performance540

degradation over time.541

The interactive dashboard allows also to select a specific timestamp showing the details of the542

degradation w.r.t. the information learned at training time. It is possible to analyse the details of the543

silhouette curves calculated by the system at training time (silhouette base) and calculated after the544

arrival of new incoming data (silhouette degraded) comparing their trends in Figures 7c ,7d for what545

concern degradation at time t1 and Figures 7e ,7f for time t10.546

Comparing the curves in Figures 7c and 7d they show that no degradation has occurred at time t1 since547

the curves are almost overlapped. While, analysing the curves in Figures 7e and 7f is possible to notice548

that the most degraded class is 2, showing a highly degraded silhouette curve (dotted curve) w.r.t. the549

base silhouette calculated at training time (continuous curve). Class 4 is instead softly degraded since550

it was affected mainly by the new classes 1 and 3.551

In this case, a quantitative comparison of the proposed approach with state-of-the-art552

methodologies proposed to estimate model degradation over time was not performed, since to the553

best of the authors knowledge none of the available data analytics solutions in literature [36–38] is554

capable of self-evaluating a predictive model degradation over time when ground-truth class labels555

are not available. Thus, any comparison to such approaches would not be objective. Techniques like556

[36] are limited to detect abrupt concept drift due to context changes and they are not able to correctly557

deal with slowly drift as in the context of degrading flows of production data. In addition, strategies558

like [38] have been developed and tested in very domain specific use cases, while the generality of the559

approach proposed here has been proved in [29,39]. Furthermore, the proposed concept drift detection560

strategy has been proved to reach near real-time performance even in big-data environments [39] and561

to the best of authors knowledge no other solutions addressed this scenario.562

Remaining Useful Life (RUL) estimation. The current implementation of the RUL estimation563

features a tunable approach for estimating the level of degradation of a machinery. In the presented564

experiments, relevant features to be included in the estimation of the RUL have been defined by a565

domain expert and validated under a robotic industry use case.566

As described in Section 4.1 the motor current signals are splitted in 24 segments to characterize each567

phase of the robotic operation. A sample current signal along with its segments is depicted in Figure 5.568

When dealing with mechanical machinery, domain experts usually posses the knowledge to recognise569

the most arduous phases of robot activity that, in long term, are the causes of its degradation. In this570

specific use case the phases in which the motor is breaking down before the idle phase (segments571

10 and 11 in Figure 5) have been selected as the phases affecting most its remaining useful life.572

To summarize the current signals in segments 10 and 11 the mean of the current values has been573

calculated separately for each segment and each RobotBox cycle. Figures 8a and 8b show respectively574

the Gaussian kernel densities as estimated for the nominal/correct classes 2 and 4 and for the classes575

describing the machinery degradation i.e. class 0. However, in a real-life setting, only the correct576

functioning of the machinery is known as used in the proposed RUL estimation (i.e., the distribution577

of classes 2 and 4) while the distribution of signals when the machinery is degrading are not available578

(i.e., class 0). Nevertheless all of them are reported only to demonstrate that the Gaussian kernel579

densities represent a simple and easy to understand and interpret approach for summarizing the580

nominal profile and behavior of an asset versus profiles representing different evolving degradation581

stages. Given the distribution of the correct and known operational profiles (i.e. classes 2 and 4) the582

probability of a new robot cycle, in terms of current mean value in segments 10 and 11, to belong to583

the distribution of classes 2 and 4 is an indication of whether the robot cycle under analysis is still584

included in a correct range of values or not and its probability. In other words, if the probability of585

a feature (current mean in segment 10) belonging to the distribution of classes 2 or 4 is high it can586
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Table 4. Self-assessment service, data injection pattern.

Label Training (t0) t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
0 - - - - - - 2000 4000 5952 5952 5952
1 - - - - - - - - 48 1591 1591
2 1500 250 473 473 473 473 473 473 473 473 473
3 - - - - - - - - - 457 3174
4 3000 - 400 800 1172 1172 1172 1172 1172 1172 1172

Tot 4500 250 873 1273 1645 1645 3645 5645 7645 9645 12362
New data% 5.26 16.25 22.05 26.77 26.77 44.75 55.64 62.95 68.19 73.31

Drift % 0.00 0.00 0.00 0.00 0.00 24.55 39.43 49.40 56.56 63.56

(a) Degradation for class 2 over time. (b) Degradation for class 4 over time.

(c) Comparisons of the silhouette curves base,
computed at training time, and degraded,
computed at time t1 for label 2.

(d) Comparisons of the silhouette curves
base, computed at training time, and degraded,
computed at time t1 for label 4.

(e) Comparisons of the silhouette curves base,
computed at training time, and degraded,
computed at time t10 for label 2.

(f) Comparisons of the silhouette curves base,
computed at training time, and degraded,
computed at time t1 for label 4.

Figure 7. SERENA cloud dashboard for the self-assessment service.

be interpreted that the RobotBox is still working as expected. Then if the probability decreases over587

time it means that the RobotBox is gradually moving to higher degradation levels, thus the probability588
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(a) Distribution of the mean of the
current at segment 10.

(b) Distribution of the mean of the
current at segment 11.

Figure 8. Distributions of the mean of the current signals for segments 10 and 11 for classes 2 and 4
describing the correct functioning of the machinery and for class 0 describing the incorrect functioning
of the machinery. The density has been computed exploiting the Gaussian kernel density estimation.

distribution of the current signals probably fits under class 0.589

590

To simulate a real scenario for the estimation of the RUL of the RobotBox, where only its correct591

functioning is known, the same data injection pattern described in Table 4 has been exploited from592

time t1 to time t7 using classes 2 and 4 to simulate the correct functioning of the machine and class593

0 to simulate the its incorrect functioning. In particular, in the context of SERENA, the Gaussian594

distribution of the current mean value in segments 10 and 11 is calculated separately by analysing all595

historical signals collected from the beginning of the RobotBox life to time t0. Then, for each timestamp596

tn the percentage of RUL is estimated via Equation 2 with new data from each cycle as shown in597

Table 4.598

Figure 9 shows the RUL value estimated at each timestamp from t1 to t7 along with their error bands.599

As expected, the trend of the remaining useful life is clearly descending over time. At the time t1 only600

data belonging to the correct functioning is collected showing an estimated RUL of almost 62% with601

an error ranging between 40% and 85%. As soon as more data belonging to the correct distribution are602

collected the RUL slowly decreases as a result of the RobotBox’s natural degradation. Then, starting603

from time t6, data belonging to the wrong (unknown) functioning of the machine are injected and the604

RUL value is decreased to 13.30% at time t6 and to 7.18% at time t7. These results were assessed with605

domain experts in the robotics industry, verifying that the high error in the RUL estimation in time t1606

is a result of the limited number of robot cycles analyzed.607

Scheduling. In the current experiment, a schedule triggered by a RUL estimation, as provided by608

the predictive analytics service, was generated in approximately 11 msec, and included the execution609

of two tasks; machine inspection and replacement of the gearbox, along with three potential resources;610

(1) a team of one newcomer and one of middle experience, (2) one newcomer and one expert and (3)611

one expert. The difference in task completion time as well as their cost are presented in the Table 5, per612

task.613

3D model visualization. This service is part of the SERENA cloud, and visualizes the 3D model of614

the RobotBox, along with its real time movement, prediction information and a 3D virtual maintenance615

procedure. Figure 10 shows a screenshot of the service interface that includes the real time position616

chart of the axis of rotation, which at runtime is mirrored by the movement of the yellow arm. The top617

bar provides links to: the ”Charts” panel, which presents visual charts of the analytics information618

coming from the prediction service; and the ”Maintenance” panel, which provides a step-by-step619

animated guide.620



Version March 11, 2020 submitted to Electronics 18 of 21

Figure 9. Remaining Useful Time percentage estimated by SERENA over time. The data injection
pattern refers to the one showed in Table 4 from time t1 to time t7.

Table 5. Information used by the scheduling service for the experiment.

Operator Task Time (min) Cost (Euros/min)
Newcomer, Middle Machine inspection 20 0.25
Newcomer, Expert Machine inspection 120 0.25

Expert Machine inspection 15 0.4
Newcomer, Middle Replace gearbox 100 0.4
Newcomer, Expert Replace gearbox 10 0.5

Expert Replace gearbox 80 0.5

Figure 10. Visualization service screenshot.

7. Conclusions and future applications621

This paper presents a lightweight architecture merging cloud based and edge deployed622

components towards a first end-to-end implementation of a predictive analytics platform, with respect623

to cyber-physical features and the vision of Industry 4.0. In this regard, the proposed architecture624

has been designed with respect to some well-established needs of industrial enterprises, such as625

compatibility with both the on-premise and the in-the-cloud environments, exploitation of reliable and626

largely supported big data platforms, high levels of horizontal scalability, easy deployment through627

containerized software modules.628
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In addition, a novel and generic methodology for RUL estimation towards enabling predictive629

maintenance activities in a cyber physical production system is introduced. Different operational630

profiles of the monitored asset(s) are created and compared to a nominal one, created at the very631

beginning of the assets setup and operation. It should be noted that the proposed approach supports632

the connection of the data collected for the RUL estimation to the existing maintenance plan, optimising633

the amount of data collected. For example, considering a conventional maintenance plan of two weeks,634

positive results out of the proposed approach can be demonstrated with a dataset of only two weeks.635

in this way, the proposed approach is capable of being applied to a versatile set of domains and assets,636

without requiring extensive and costly monitoring systems and numerous sensors.637

A prototype has been implemented and validated in an industrial use case concerning the638

predictive maintenance of a robotic manipulator. A set of services has been integrated to evaluate the639

proposed architecture and its potential. The results demonstrate that the integrated solution achieved640

to bridge the gap between machine data acquisition and cloud processing and enable the generation of641

predictive analytics and strategies. The use of containerization technologies poses additional effort642

for industrial applications, including workload balancing, automating deployments, auto-discovery643

of nodes, as well as the configuration effort for creating the cluster. As the proposed approach is not644

constrained to any specific set of technologies, it has the ability to evolve as the project progresses into645

the next phase.646

In conclusion, future work will focus on integrating additional functionalities to the overall647

architecture, such as data security features and increasing the robustness of the integrated solution.648

As it regards the data analytics, further investigation and research is required to effectively analyze649

different kinds of industrial processes (including those that are very slowly degrading over time) and650

being able to perform the prediction with different time horizons. Moreover, since the analytics part is651

a critical aspect for enabling predictive maintenance solutions, particular focus will be given on testing652

and improving the proposed approaches in the context of other real-life settings, on both on-premise653

and (public) cloud.654
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