

VerSatilE plug-and-play platform enabling remote pREdictive

mainteNAnce

Grant Agreement No : 767561

Project Acronym : SERENA

Project Start Date : 1st October 2017

Consortium : COMAU S.p.A.

Finn-Power Oyj

VDL Weweler BV

WHIRLPOOL EMEA SpA

Kone Industrial Ltd

Engineering Ingegneria Informatica S.p.A.

OCULAVIS GmbH

SynArea Consultants S.r.l.

DELL EMC

Laboratory for Manufacturing Systems & Automation

Fraunhofer Gesellschaft zur Förderung der angewandten Forschung

VTT Technical Research Centre of Finland Ltd

TRIMEK S.A.

Politecnico Di Torino

Title : Design of cloud-based platform for remote diagnostics
Reference : D5.1

Dissemination Level : PU (public)

Date : 2018-09-30

Author/s : ENG/DELL EMC/IPT/COMAU/SYNAREA

Circulation : EU/Consortium

Summary:

The design of the SERENA cloud-based platform for remote diagnostics will be presented in this
document to drive the work in all the implementation tasks of WP5, but in strict collaboration with the

parallel work in WP2-3-4 to be validated in WP6, following the requirements defined in WP1.

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 2 (42)

Contents

List of Abbreviations ..3

List of Figures ..4

Executive Summary ..5

1. Introduction ...7
1.1 Motivation ..7
1.2 Work package objectives ...7
1.3 Requirements ... 10

2. SERENA Cloud Platform design .. 11
2.1 Concept .. 11
2.2 SERENA Cloud Platform .. 11
2.3 SERENA Infrastructure .. 13

2.3.1 SERENA Auxiliary Services ... 14
2.3.2 SERENA Containerisation .. 14
2.3.3 Container Management.. 15
2.3.4 Exposing Container Resources .. 15
2.3.5 Docker Image Development .. 16

2.4 Container Orchestration Sub-system .. 17
2.4.1 Container Services... 17
2.4.2 Container Management Policies .. 19
2.4.3 Docker API Plugins ... 19

2.5 Ingestion Sub-system ... 20
2.6 Repository Sub-system .. 21
2.7 Processing Sub-system ... 21
2.8 Plug-n-Store Sub-system ... 22
2.9 Internal communications ... 22
2.10 Hardware architecture .. 22

2.10.1 Development Infrastructure ... 22
2.10.2 Pilot Infrastructure... 23

3. System interfaces ... 24
3.1 Human – machine interfaces ... 24

3.1.1 3D viewer ... 24
3.2 External interfaces ... 25

4. Integrity controls ... 26

5. Operational scenario ... 27

6. Conclusion ... 28

References ... 29

Annex A – Requirements extract from D1.1 .. 30

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 3 (42)

List of Abbreviations

AI Artificial Intelligence

AR Augmented Reality

CAD Computer-Aided Design
CEN European Committee for Standardisation

CSP Cloud Service Provide

CWA CEN Workshop Agreement
DNS-SD DNS Service Discovery

ERP Enterprise Resource Planning

HDFS Hadoop Distributed File System

HMI Human Machine Interface
HTTP HyperText Transfer Protocol

ICT Information and Communications Technology

JEE Java Platform, Enterprise Edition
JSON-LD JavaScript Object Notation for Linked Data

KPI Key Performance Indicator

NTP Network Time Protocol
ODBC Open DataBase Connectivity

OEM Original Equipment Manufacturer

PLC Programmable Logic Controller

RDF Resource Description Framework
REST Representational State Transfer

SaaS Software as a Service

SME Small and Medium Sized Enterprise
SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

STEP STandard for the Exchange of Product model data

ToC Table of Contents
TRL Technology Readiness Level

UUID Universally Unique IDentifier

VR Virtual Reality

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 4 (42)

List of Figures

Figure 1 D5.1 and contributing tasks ...5
Figure 2 WP5: tasks and deliverables ..8
Figure 3 Relationship with other tasks ...9
Figure 4 Role and goals in maintenance scenario ...9
Figure 5 SERENA Logical Architecture .. 11
Figure 6 Container Port Mapping .. 15
Figure 7 Docker Development Environment.. 16
Figure 8 Docker Forwarding Service Request ... 18
Figure 9 Portainer Orchestration UI .. 19
Figure 10 Main information flow related to the SERENA Cloud Platform ... 22
Figure 11 SERENA 3D viewer web-based visualization .. 25

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 5 (42)

Executive Summary

The purpose of this document is describing the design of WP5 developments. The current deliverable
(i.e. D5.1 – Design of cloud-based platform for remote diagnostics) aims to report on the actual results

of several tasks, namely (see Figure 1):

• T5.1 Communications and Data Processing Architecture design for remote diagnostics which starts

at M7 and ends at M12

• T5.2 Plug-and-play platform for data management and storage

• T5.3 Multi-level data processing & correlation

• T5.4 Data confidentiality and security middleware

• T5.5 Implementation of Advanced HMIs for data presentation which start at M9 and end at M24

The user’s requirements collected in WP1 for the cloud-based platform for remote diagnostics will be

used for defining the SERENA cloud-based solutions for predictive maintenance but considering also
the requirements related to the remote factory condition monitoring, AI condition-based maintenance

and planning and AR based tools for remote assistance and operator support. The overreaching solution

will be able to support predictive diagnostics and data analytics in a remote cloud and proposing

corrective actions and guidance for maintenance activities within the factory.

To this end the main input of such activities is D1.1 – Report on Use-case definition, evaluation metrics
and End-Users requirements, another project deliverable integrating and reporting the outcomes of all

tasks in WP1 whose objectives are: a comprehensive description of the targeted use-cases from the end-

users (WHEMEA, KONE, TRIMEK, VDLWEW); extract user requirements and evaluation criteria in

terms of performance, usability and relevant KPIs; define the roadmap towards achieving industrial TRL
for each targeted technology; have a precise description of the end users requirements in terms of remote

factory condition monitoring, AI condition based maintenance and planning, AR based tools for remote

assistance and operator support, cloud-based platform for remote diagnostics.

Moreover, D5.1 has been written taking in consideration the approaches followed in the following

deliverables due at M12 as well:

• D2.1 - Design of versatile framework for factory condition monitoring: this deliverable describes

the design of HW and SW solutions for versatile remote factory monitoring;

• D3.1 - Design of versatile maintenance and planning: this deliverable describes the design of WP3
approach in terms of improving existing solutions for predictive maintenance as well as planning of

maintenance solutions;

• D4.1 - Design of AR-based remote diagnostics platform and interfaces: this deliverable describes

the design of WP4 overall approach in terms of development and adaptation of Augmented Reality

(AR) based technologies for providing step-by-step assistance to the maintenance technicians and
sensor-based information about the status of the machinery and overall equipment within the

factory;

• D6.1 - Test beds design & adaption: this deliverable focuses on the design and integration of the

test beds regarding the white goods, metrological engineering, and elevators production industrial

Figure 1 D5.1 and contributing tasks

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 6 (42)

pilot cases (WHEMEA, TRIMEK and KONE), as well as the pre-demonstration case of steel parts

production industry (VDLWEW). To this aim, the SERENA architecture will be tailored to allow

use case owners to implement their testbeds in accordance with their specific requirements and

constraints.

The methodology followed to complete deliverable D5.1 included:

• Table of Contents (ToC) and document scope: once the ToC was agreed among the partners, a

detailed template including a description of the required information along with examples was

circulated to guide the section coordinators in the collection of the required information from all the
contributing partners.

• Theoretic background/principles and existing frameworks, solutions, references, technologies

analysis and alignment to the project objectives.

• Follow up activities to monitor the work progress through principally two types of meeting: (1) Bi-

weekly task leaders conference meetings specifically dealing with WP5-related activities; (2)
Monthly conference meetings with all the work-package leaders focused on SERENA overreaching

solutions specification and development.

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 7 (42)

1. Introduction

1.1 Motivation

Aim of WP5 is defining the cloud-based platform for versatile remote diagnostics enabling predictive

diagnostics, by managing the data remotely, applying data analytics and predictive maintenance
algorithms in a remote cloud and proposing corrective actions and guidance for maintenance in near real

time and in the correct place within the factory.

The challenges faced by the different cloud implementations vary, therefore the requirements

defined for the SERENA cloud-based system must encompass the combined set of all requirements,
enabling several deployment approaches (e.g. private cloud, public cloud, or on-premises). To this end,

the SERENA system should provide a layer of abstraction, which, to the extent possible, obscures the

system from the underlying implementation.
One characteristic that most cloud-based systems have in common is that they are based on a

distributed architecture (e.g. defining a microservices architecture), consisting of several independent

services providing the application functions. Such an architecture has several advantages over previous
monolithic or bespoke component architectures: a) they are more responsive to the demands of the high-

variable of modern businesses; b) they are more scalable, as predefined templates can be instantiated

quickly to meet increasing production demands; and c) it is easier to swap out one component for

another, provided it conforms to the same API and behaviour. The last point is particularly relevant for
the SERENA project as it facilitates a plug-and-play architecture, which is one of SERENA’s core

objectives.

Microservices architecture typically implement the different services in one, or a set, of
container(s) in a virtualised environment, this gives the system the flexibility to instantiate preconfigured

services from container templates and move containers around the physical IT infrastructure to optimise

its performance. As most major CSP provide their tenant environments as a microservices architecture,
and many private clouds are implemented in the same way, basing the SERENA system on a

microservices architecture gives the manufacturing company the flexibility to implement their solution

in either environment, or a hybrid of the two. It also means that the SERENA system can inherit the

added benefits of a microservices architecture, as outlined in the previous paragraphs. Whilst each CSP
implements their environment in a proprietary way, the industry is starting to converge on a set of

common architectural patters, and support for common services; by exploiting this convergence, the

SERENA system can be made highly flexible in how and where it is deployed.

1.2 Work package objectives

WP5 aims to design a cloud-based platform for remote diagnostics, providing specifications for the

networking infrastructure, the cloud computing infrastructure, the data processing components, the
digital models, and the shared situation awareness components and to instantiate the remote SERENA

Cloud Platform for piloting purposes in the different industrial sectors.

To reach this objective, WP5 has been decomposed in 6 tasks (see Figure 2):

1. Task 5.1 Communications and Data Processing Architecture design for remote diagnostics.

This task is responsible for specifying the communication and data processing components, from

the shop-floor to the cloud and back and the designing new communication capabilities (green-
and brown- field integration). The main results are the specification of an industrial networking

infrastructure supporting both edge and cloud components and the selection of a service

infrastructure (e.g. based on existing open source solutions).
2. Task 5.2 Plug-and-play platform for data management and storage.

This task is responsible for developing techniques and tools for sensing context data and defining

semantic techniques for aggregation and fusion and developing and deploying new integrated
data-lifecycle management approach. The main results will be the Integrated process execution

sensing service, the Cloud Storage Service supporting the Plug-and-Store paradigm and data

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 8 (42)

aggregation capabilities and the Real-time communication using self-descriptive communication

protocol.

3. Task 5.3 Multi-level data processing & correlation

This task is responsible for developing new techniques for real-time processing, analysing, and
interpreting and enabling the execution of machine learning and data analytics tasks. The main

results will be an infrastructure for distributed data analytics over the edge/cloud nodes.

4. Task 5.4 Data confidentiality and security middleware

This task is responsible for defining the data protection approach, analysing existing standards and

available open source solutions, and providing built-in functionalities using a multi-layer Security-

by-Design approach. The main results will be the principles and the guidelines to drive the
trustworthiness of the SERENA architecture and the development of a Secure Middleware for

distributed architecture.

5. Task 5.5 Implementation of Advanced HMIs for data presentation

This task is responsible for developing techniques and tools to support the visual representation of

the sensed and fused context data and for using multi-modal interaction technologies. The main

results will be the Visualization-as-a-Service capabilities and a set of web services to configure

the visual features of the HMI (e.g. from AR tools developed in WP4)
6. Task 5.6 Cloud-based platform prototype

This task is responsible for integrating the components of the previous tasks into a prototype,

supporting the deployment on several possible technology platforms and support an easy and

seamless integration with commercial SW (maintenance and production). The main results will be
SERENA Cloud Platform prototype.

Based on the requirements of WP1, the project will focus on developing the prototypes in terms of a)
definition of the service-oriented architecture for remote control (WP2), b) Al condition-based

maintenance and planning techniques (WP3), c) AR-based technologies for remote assistance and

human operator support (WP4) and d) Cloud-based platform for versatile remote diagnostics (WP5) (see
Figure 3).

Figure 2 WP5: tasks and deliverables

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 9 (42)

These development activities will be the first step of an iterative process which will lead to the first

prototype of WP5 developments in M24 and the final prototype in M30.

The main goals of the predictive maintenance are:

• avoid an unpredicted fault and predict when it could occur;

• avoid unnecessary machineries/equipment replacement, if they are still able to work well enough;

• providing valuable information to the maintenance director, who needs to evaluate risks and
benefits that comes from a predictive scenario;

• produce cost savings over preventive maintenance, allowing a convenient scheduling of the

maintenance operations.

These goals are pursued by the SERENA project, working with production data that comes from the
field (from the IoT platform) and getting additional information from the operational systems (e.g.

master data, ERP, etc.) used by the customer to manage the whole maintenance process and to provide

direct feedbacks for received early warnings, with eventual related interventions (see Figure 4).
Using this additional information, the SERENA Cloud Platform can measure impact over costs and

operations, fully supporting the decisional process concerning the maintenance plan.

To achieve the listed goals data are collected from the field and loaded into a data lake (on-premise or

on-cloud) at the end of every working cycle. Here, advanced algorithms based on machine learning

Figure 3 Relationship with other tasks

Figure 4 Role and goals in maintenance scenario

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 10 (42)

techniques learn what is the standard behaviour of every machinery/equipment, predict what will be the

expected one in the future, evaluating if that could be anomalous or not.

1.3 Requirements

The main requirements for the technical developments of WP2-5 and for the basis of the testbed design

in WP6 have been defined in the scope of WP1. Specifically, these comprehend:

• an analysis of the status and requirements of the different pilot cases, including the equipment to be

considered within the project, the maintenance needs, the expectations from the project;

• The identified requirements of the technical systems to be developed based on the needs identified
in pilot cases analysis, focusing on the following aspects:

o Remote factory condition monitoring and control

o AI condition-based maintenance and planning techniques

o AR-based technologies for remote assistance and human operator support
o Cloud-based platform for versatile remote diagnostics

Focusing on WP5 - Cloud-based platform for versatile remote diagnostics, the main functional and non-
functional requirements of the Cloud-based platform have been grouped in several families, covering

the differne sub-sytems foreseen un WP5. The main logical functions has been decomponsed in

ingestion, storage, processing, management (for further details on the identified requirements under the
scope of WP1 please check Annex A).

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 11 (42)

2. SERENA Cloud Platform design

2.1 Concept

Designing the SERENA Cloud Platform, the following functions will be provided:

• Communications and Data Processing Architecture design for remote diagnostics

o Specification of an industrial networking infrastructure supporting both edge and cloud
components

o Selection of a service infrastructure able to provide new communication capabilities

• Plug-and-play platform for data management and storage

o Integrated process execution sensing service

o Cloud Storage Service supporting the Plug-and-Store paradigm and data aggregation
capabilities

o Real-time communication using self-descriptive communication protocol

• Multi-level data processing & correlation

o Infrastructure for distributed data analytics over the edge/cloud nodes

• Data confidentiality and security middleware
o Principles and guidelines to drive the trustworthiness of the SERENA architecture

o Secure Middleware for distributed architecture

• Advanced HMIs for data presentation

o Visualization-as-a-Service capabilities

• Set of web services to configure the visual features of the HMI

2.2 SERENA Cloud Platform

The SERENA Cloud Platform relies on several logical components, described in the following picture:

This reference architecture can be implemented over different platforms, because it is not strictly
dependant from a specific solution provider. However, the actual identified solution adopts the Cloudera

distribution of the Hadoop ecosystem, so the following each building block is described in general terms

and with a reference to the Cloudera modules (please notice that the following content in Section 2.2

Figure 5 SERENA Logical Architecture

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 12 (42)

has already been described with D1.1, and it is replicated here for providing a coherent description of

the designed solution).

Ingestion Layer

This layer deals with the task of collecting data from several sources, performing some pre-processing

workflow, and saving them in the Data Lake. The data ingestion can gather data in real time fashion as

well as in batch, depending on the source and on the use-case. For the current purposes, the ingestion is
scheduled and gets data from FTP directories where files collected from the plant are available on daily

basis. The aim of this component is to enable the transmission of files from the inside of the data lake

to the outside (as happens with the model built on the big data platform that is made available to the
early warning module in-plant). The tool chosen to accomplish all the above features is Apache Nifi.

Storage Layer

The storage layer is responsible for the persistence of raw data collected by the ingestion process and
data which is the result of the distributed processes and analysis within the data lake. There are different

storages that can be used since supported by each Hadoop distribution: distributed file system or NoSQL

database. For the SERENA project, both HDFS and MySQL are used, depending on the data pipeline
to build. HDFS stores incoming data from the ingestion process and the datasets computed by the

algorithms, while MySQL holds metadata.

Information brokers/pub-sub

To satisfy real-time purposes, a publish-subscribe distributed message queue is available within the data

lake platform, even if not configured yet. The role of this component is to stock data from streaming

ingestion processes to feed the streaming layer of computations described below.

Stream Processing layer

Although not fully designed, streaming pipelines can be developed by using Spark Streaming libraries.
It allows data to be filtered, processed, aggregated, and analysed event by event so that real-time results

are available.

Publication Layer

In the reference architecture, this layer shows the results of the predictive maintenance algorithms run

on a huge amount of data collected from the field by the batch processes described above. As default

SERENA will provide a prebuilt set of analysis, but some other analysis can be added using any other
analytics tools and libraries.

Batch Processing Layer

Once data is landed on the data lake it is processed by the distributed framework Spark, capable of

managing huge amounts of data, dealing with cleaning tasks as well as analysis through custom

algorithms for predictive maintenance objective. The batch jobs are scheduled and executed evenly

across the cluster every day.

Data Access Layer

To access files stored in the data lake, because of the advanced analytics run by the batch processing
layer in Spark, a SQL layer is configured. This tool acts as a gateway for applications that need to publish

information generated in the data lake through a front-end UI, as well as perform some additional query

on Hadoop, benefiting from the parallel computation that can be run on the platform. Impala is the

chosen tool that allows the publication layer to perform insights on the data lake.

Security Layer

The Security layer involves authentication, authorization, encryption, and data lineage features, and
strongly depends on the chose Hadoop distribution: SERENA is enabled to use Kerberos protocol to

connect to Active Directory or LDAP authentication user domains. On HDFS privileges can be

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 13 (42)

configured using ACLs policies, while It is also possible to set proper permissions on Impala tables

through Apache Sentry (embedded in the solution). To perform data lineage and leverage encryption at-

rest policies Cloudera Navigator can be used, subscribing Cloudera Enterprise Data Hub license.

Scheduler

This layer addresses the scheduling of batch jobs and orchestrates them through a proper workflow of

different actions. Within the current scenario, this task is dealt by Oozie.

Resource manager

Hadoop allows distributed jobs to be executed in the cluster, where data is hosted. Different jobs are run
on the available nodes in the platform, considering the resources in terms of RAM and CPU and the data

locality of the partitions of the files to be processed. All these tasks are managed and scheduled by

YARN, which is the resource negotiator of Hadoop.

Cluster Manager

Every Hadoop distribution offers a tool to manage the cluster, in terms of hosts and services. Cloudera

Manager is a web application, made for Hadoop Administrator to let them master the platform.

2.3 SERENA Infrastructure

As defined in section 2.2, the SERENA system is comprised of several logical components, which

collectively provide SERENA’s predictive maintenance functionality. These logical components reside
in the SERENA cloud, but the functionality extends to the edge gateways and sensors on the factory

floor. It also encompasses other SERENA functionality including a) adaptive maintenance scheduling,

driven from the prediction results; b) augmented reality to assist operators and technical staff
maintaining the factory equipment; c) equipment visual simulation applications; and d) other incumbent

factory management system. Additionally, the SERENA system is intended to be flexible enough to be

hosted on an on-premises environment, a CSP environment, or a hybrid of the two, as outlined in Section

1. To meet these varying requirements, the SERENA system will be designed on a micro-services
architecture pattern [1], where each logical component is a service within the SERENA system.

Each service within the SERENA system communicates and collaborates with other services to

perform its specific function, and extends to other components, such as the edge gateways. The principal
communications protocol is based on HTTP REST, but other protocols can be supported as required.

Whilst REST is a text-based protocol, and therefore not as efficient as some binary protocols, its wide

spread support, both inside the manufacturing industry, and beyond, make it an ideal candidate for
SERENA. In a micro-services architecture each service can communicate with a set of other services,

to perform its function. Therefore, the SERENA infrastructure will implement functionality to facilitate

this inter-service communication in a reliable and secure way.

The SERENA system must also support several non-functional requirements including a)
flexibility; b) scalability; c) reliability; and d) security. As previously discussed, the SERENA system

must be flexible enough to be hosted on a wide variety of on-premise and CSP environments, but

additionally it should be agnostic to the actual technology used to implement a logical component.
Whilst the SERENA reference architecture is largely based on the Cloudera technology stack, the

reference architecture defines a logical set of the API and behaviour for each service. Therefore, the

actual technology implementation of a service, can be swapped for any other suitable technology,
provided it conforms to the logical component’s API and behaviour. For example, the reference

architecture implements the ingest service using Apache’s NiFi1 data flow engine, but this service could

be replaced with an equivalent one based on Apache Camel2; it is the logical component’s function

within the SERENA system that is important, not its technical implementation. This implementation
transparency is an important concept in SERENA’s plug-n-play functionality.

1 https://nifi.apache.org/
2 http://camel.apache.org/

https://nifi.apache.org/
http://camel.apache.org/

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 14 (42)

2.3.1 SERENA Auxiliary Services

In addition to SERENA’s main functional services, there are several auxiliary services, which contribute

to the overall operation of the system, such as DNS-SD and NTP services. The Domain Name System

Service Discovery service is used by subsystems to discover service they need to perform their function
and resolve their domain names into IP addresses. This functionality decouples the logical component

providing the service, from the location of the service denoted by its static IP address. SERENA provides

additional features to abstract services from their implementations, which will be described later. The
Network Time Protocol (NTP) service helps maintain a synchronised system wide time across all

SERENA services and edge gateways. When collecting sensor data from multiple IoT sources, it is

important that the distributed subsystems all share the same system time, so that timestamped data can
be accurately correlated with events.

2.3.2 SERENA Containerisation

The principal infrastructure technology to implement SERENA’s services is Docker containers [2].

Docker provides an open source implementation of a process containerization system, which
encapsulates the service, and abstracts it from the underlying infrastructure that hosts the containers.

Unlike virtual machines, which are a mechanism for logically dividing physical machines, Docker

containers are principally a mechanism to wrap an application, and the resources required to run it, into
a simple executable unit. Therefore, Docket containers are isolated from the underlying host

infrastructure, and can easily be distributed between the available hosts to improve the flexibility and

agility of the system. Docker containers share many similar features to virtual machines, but, as

explained, they perform distinctly different function within the infrastructure system. In fact, virtual
machines and containers can be complimentary technologies, and used in conjunction with each other,

the containers being layered on top of the virtual machines. One of the goals of the SERENA project, is

for the SERENA system to have the flexibility to run on a wide variety of host infrastructures, from
physical servers or virtual machines, to on-premises clouds and CSP hosted environments, Docker

containers provide the mechanism to achieve this goal.

As well as being used to implement the SERENA cloud services, the same Docker containerization
technology is used, to encapsulate and abstract, processes on the edge gateway devices, SERENA edge

services. This abstracts the SERENA edge services, distributed around the factory floor, from the

underlying gateway operating system and hardware that host them. Again, this achieves another of

SERENA’s goals, i.e. to give the implementer of the SERENA system the maximum flexibility in how
it is deployed. Using the same containerisation technology in both the SERENA cloud and on the

SERENA edge gateways, means that the SERENA system, has a unified architecture, which operates

and can be managed. It also facilitates the migration of services, in the form of Docker containers, from
the SERENA cloud to the edge gateways. This allows services to be moved around the SERENA system

to where they are needed, or can be operated most efficiently, rather than being fixed in any one location

in a classic static architecture.
Docker containers are instantiated from Docker images, which are like virtual machine templates,

like a blueprint of how do build and run the contained application and the resources it requires. The

container is a wrapper around the instantiated image, that provides a common API to manage the

containers lifecycle, as well as exposing the application contained inside it. Typically, a docker image
consists of a single application, which conforms to the micro-services architecture pattern. If several

applications are required, to perform a specific piece of system functionality, such as a JEE server and

its web server proxy, the discrete applications are implemented as separate images, and instantiated as
a stack of individual containers linked together to perform their function.

Docker containers are instantiated and run on the Docker execution engine, which must be installed

on each platform that hosts Docker containers. The execution engine is like the hypervisor used to run

virtual machines. There is no conflict if the Docker containers are run on top of virtualised host
infrastructure; in this case the virtualised host infrastructure hosts virtual machines, and the virtual

machines host the Docket execution engine, with both abstraction layers providing different, but

complimentary, functionality to the overall system. The execution engine, and its associated tools,

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 15 (42)

manage the lifecycle of the containers running on the host, they also manage the images and how they

are downloaded and/or built.

2.3.3 Container Management

Docker images reside in a Docker image registry. Each Docker execution engine has its own local
registry, which hold images downloaded or locally built. There is a common Internet registry called

Docker Hub [3], which holds open source images create and uploaded by third parties. When an image

is instantiated into a container by the local Docker execution engine, it first tries to find the image in its
local registry. If the image is not found locally, it is downloaded from a remote registry; the default

registry is Docker Hub. Whilst this works for certain Docker implementations, it is based on some

assumptions that a) the SERENA system would always have access to the Internet; b) the images
correctly implement the required functionality; c) the image configuration exposes the containers

network and storage in a way that conforms to SERENA’s reference architecture; and d) the images do

not contain malicious code [4]. To mitigate the risks of an Internet based registry, the SERENA system

implements its own system wide local registry. This does not preclude images being downloaded from
the Internet but means the process can be performed in a controlled manner, with the images always

being available from the local system registry. For resilience and security, SERENA production Docker

execution engine should not download their images from the Internet, but instead default to the local
system registry. An additional advantage of using a local system registry, is that it is possible to ensure,

through comparing image digests, that the same SERENA image is being run on each local Docker

execution engine, in the SERENA system, which ensures consistency of behaviour across the system

services.

2.3.4 Exposing Container Resources

The server that hosts the Docker execution engine shares a private internal network, that was created as

part of the Docker installation process. By default, the application within the Docker container can
access the host’s external network, but the container does not expose any network ports, therefore the

application cannot be accessed by any external entity. It is often necessary to expose an applications

network ports to make it is features accessible, such as a database’s ODBC port or an applications
management graphical user interface. Docker containers can be configured to expose a port when they

are instantiated, and the port is mapped to an available host port. Thus, the application running inside

the container can be accessed from the hosts IP address and the mapped port. The internal application

port does not need to be mapped to the same port number on the host, e.g. the application may provide
an HTTP interface on port 80, but this can be mapped to the host’s port 8090, see Figure 6.

This feature avoids conflicts with existing ports used by the host, but for the SERENA system it has an

added benefit; some applications, such as node-red, use a standard port, 1880, to expose input nodes in
their workflows. If multiple containers were running the same application image, on the same host, they

would have the same internal port numbers, and a port conflict would occur. Instead each container

instance can be configured to map to a different host port. So, in the node-red example, the internal

Figure 6 Container Port Mapping

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 16 (42)

node-red port, 1880, could be mapped to port 9880 for the first container, 9881 for the second container,

and so on; thus, multiple discrete node-red instances, could be run on the same host, without causing a

host port conflict.

By default, Docker containers are supposed to be stateless, that is they do not modify any
application data internally. This is very powerful as it means that each container running the same image,

are effectively clones. So, if a container dies, it can be replaced with another container running the same

image. Likewise, if the system requires more capacity, additional contains can be started, sharing the
workload between them. For example, multiple web proxy server can be started, and the Internet traffic

balanced between them. However, many applications modify state, e.g. a database server continually

alters its data and log files based on the SQL operations being performed. It is possible to store the state
of an application by modifying the container’s internal files, but in most cases, this is not desirable as it

means that the containers are no-longer clones of each other. Instead Docker images can externalise

their state by storing specific application directories outside of the container. How and where these

directories are externalised is controlled by the Docker execution engine.

2.3.5 Docker Image Development

Whilst Docker images can be downloaded from a remote trusted source, they will typically need to be

modified to conform to the SERENA architecture or to meet specific manufacturing process
requirements. Alternatively, the images can be built locally from scratch. Either way there are two

methods to build of modify images a) defining the configuration of the image in a Docker file, along

with the configuration resources to build the image; and b) to instantiate an image in a container, then

modify the application running in the container and saving the container back as an image. Whilst the
former image build/modification method is the more usual, the later method has advantages in certain

scenarios; the SERENA system will utilize both methods.

Figure 7 illustrates the concept of the SERENA Docker development environment, which consists of

the Docker development host, the Docker production hosts, and the SERENA system registry. Docker
images are built and tested on the development host, which is a sandboxed environment isolated from

the production Docker hosts. More than one development host can be implemented to facilitate parallel

development, or where complex inter host connectivity needs to be tested. The images can be
downloaded from an Internet registry or created locally from scratch. As the development environment

is fully sandboxed, images downloaded from the Internet can be fully verified and scanned for malicious

code without exposing the production environment to potential risks. Once the images have been fully

Figure 7 Docker Development Environment

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 17 (42)

tested on the development environment, they are uploaded to the SERENA system registry, from where

they can be rolled out to the required production hosts.

Typically, images for specific SERENA services would be built using a Docker file to define their

construction and the required libraries, executables, and other resource; or downloaded from the Internet
and modified to run on the SERENA system. Each service image is given a name consisting of the

SERENA repository where it can be downloaded from, the name of the service it contains, and a

sequential version number. The version number consists of three standard parts, the major release, the
minor release, and the patch number. As an image is updated, its version number is incremented

appropriately.

It is sometimes difficult to modify an applications behaviour by changing the Docker file, as the
changes are embedded within the application and cannot be easily altered by command-line entries. In

these cases, a different image modification approach is taken. The image is instantiated into a running

Docker container on the development environment. Here the running application can be modified to

meet the new requirements of the system. Once the desired modification has been made and tested, the
container is saved as a new Docker image, with an incremented version number. The updated image can

then be rolled out into production in the manner previously described. For example, a node-red process

flow service, designed to handle sensor data from a specific piece of factory machinery, must be
modified to collect additional sensor data. Node-red uses a graphical user interface, so its flows can be

difficult to update from the command-line, especially if new specialized nodes need to be installed for

the flow. Instead the node-red flow engine, the specialised nodes and the specific flow required to

process the machineries sensor data, are packages as a homogenous Docket image. If the flow needs to
be modified, the existing image is run in a container, modified via the graphical user interface, and saved

as a new image. This technique should be avoided if possible, as it involves altering the internal state of

the image but is the simplest approach in certain instances.

2.4 Container Orchestration Sub-system

Simple Docker environments, used for development and testing, can be managed manually using

individual Docker commands; effectively, each Docker execution engine is managed individually. For
large production environments a more holistic and automated approach is needed, which can be achieved

using a container orchestrator. There are several excellent open source container orchestrators available,

two of the main ones are Kubernetes [5] and Docker Swarm [6], but there are a number of open source
and commercial container orchestrators available. The SERENA reference architecture uses Docker

Swarm, but many of the alternatives have similar features, and in theory it should be possible to swap

Docker Swarm for one of the others, such as Kubernetes.
Docker Swarm is bundled with the Docker execution engine and is a distributed peer-to-peer

container management infrastructure. Docker execution engines can join a Docker Swarm as either a

manager or a worker. Managers connectively control the Docker Swarm, and both managers and

workers can run containers as part of the swarm. It is important to understand that Docker Swarm is a
peer-to-peer system, so the swarm can be controlled by any manager in the swarm, but apart from the

management functionality, every Docker execution engine in the swarm has the same status, and there

is no central point of control, the swarm is managed collectively. In SERENA’s case the swarm extends
out from the SERENA cloud to the SERENA edge, forming a homogeneous container environment all

the way to the factory floor.

Docker Swarm has a few features that help to fulfil SERENA’s functional and non-functional
requirements, these include a) the concept of resilient cluster services, which are location independent;

b) container runtime policies, and a robust security framework; and c) the ability to extend Docker’s

functionality using plug-in APIs.

2.4.1 Container Services

Central to the concept of a Docker Swarm is the service. A Docker service is image that performs a

specific function for a system, such as web proxy server. The swarm instantiates one of more images as

containers, whose lifecycle are directly managed by the swarm; each running container is called a task.

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 18 (42)

The swarm creates the specified number of tasks, and distributes them between the available hosts, based

on user defined policies, which will be discussed later in the section. If one of the tasks fails, it will be

restarted by the swarm, and if a host fails its hosted tasks will be redistributed to other hosts in the

swarm. Ideally the service images should be stateless, and the tasks are clones of one another, which
allows them to be restarted in another location, without impacting the overall operation of the service.

In case an instantiated container fails, the local Docker execution engine takes no further action,

and the application is not available. Creating a service consisting of a single task, has the advantage that
if it fails, the swarm will restart another clone of the image, either running on the same host or a different

on. Therefore, there is an advantage in instantiating an image as a service, even if it only has one task,

as the swarm will automatically maintain the required number of instances making the service always
available; and fulfilling one of SERENA’s main non-functional requirements – component resilience.

Although a Docker service is made up of individual tasks, Docker containers are under the control

of the swarm, they effectively operate as a single entity. As previously mention, if a task in a cluster

fails, another one will be created to replace it; but the swarm can also dynamically increase or decrease
the number of tasks in a service, so if the workload increases the user can modify the number of instances

in the service, and the swarm will automatically start new tasks to comply with the updated policy. The

swarm instructs each host running a task to download and run a specific image from the Docker registry.
As the SERENA image registry resides in the swarm, as a service, and all SERENA’s cloud production

infrastructure hosts and edge gateways are part of the swarm, the swarm can instantiate any SERENA

image from the dedicated SERENA system registry, which ensures that all hosts are running the same

version of the image. By default, all tasks in a cluster share a common cluster port number, and the
swarm load-balances incoming traffic between the tasks in the service, therefore a service is collectively

defined by its port number. If a node in the swarm receives network message for a given service, denoted

by its service port, and it is not hosting one of the tasks in a service, the node forwards the message to
another node in the swarm that is hosting one of the tasks in the service, see Figure 8. SERENA concept

of a service maps directly to Docker Swarm’s implementation of a clustered resilient service and

fulfilling another of SERENA’s main non-functional requirements – system scalability.

One technical challenge for SERENA, is for the node-red flows running on the gateways, to be able to

forward their sensor data to the SERENA ingest service, but how do they know the network address of
the service. Hardcoding the IP address into the flow is not a production scalable solution. The SERENA

DNS-SD service will help identify the service, resolve it to its domain name, and then resolve it to its

dynamic IP address. Another implementation strategy would be to use the Docker service port
forwarding functionality. The ingest service is hosted, as a cluster, on several servers in the SERENA

cloud infrastructure, which are part of the Docker swarm. If the edge gateway is also part of the Docker

swarm, it does not host an instance of the ingest service, but the local Docker execution engine knows
where the task in the services are hosted and will forward any incoming message to one of the tasks. So,

if a node-red flow image running in a container on an edge gateway, sends a message to its own host

using the ingest services common port number, the host should automatically forward the message to

an instance of the ingest service.

Figure 8 Docker Forwarding Service Request

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 19 (42)

2.4.2 Container Management Policies

Docker manages service by means of policies, e.g. policies can be setup to only run tasks on specific

hosts, to run a specific number of tasks in a service cluster, or that every instance of a host with a given

policy label should run a single instance of a specific service. For example, if we have an edge gateway
that monitors a given piece of machinery, it needs to host a specific node-red flow image to process the

sensor data from that machinery; by defining a Docker policy label on the gateway, which identifies the

required image, Docker swarm will ensure that the require image is downloaded and run on the gateway.
As any number of policies can be defined for a swarm host. All Docker images that need to run on a

specific host can by defined and automatically deployed.

Docker Swarm also can perform a staggered rollout for an updated image. For example, if a service
image was updated and tested, in the development environment and uploaded to the SERENA system

registry, Docker swarm can be used to perform a staggered rollout of the new version sequentially to

every swarm node hosting a service task. In this way, production service updates can be, automated and

rolled out in a controlled manner.
Docker Swarm has a strong security framework based on policies and certificates to authenticate

entities and is like Archers distributed security framework. The intension for SERENA is to extend the

Docker Swarm security framework to meet SERENA’s security requirements.

2.4.3 Docker API Plugins

Docker and Docker Swarm provide an extensive set of APIs and plugins, which allow the functionality

of the container management system to be extended and integrated into the broader SERENA system.

For example, Docker provides basic externalisation of storage volumes, from the Docker containers, but
this functionality can be enhanced to implement more sophisticated storage drives, which can implement

virtual storage solutions. SERENA will make use of the storage volume plugin to develop its own plug-

n-store storage driver. Docker and Docker Swarm also provide an extensive and secure management
API, which enables third party products to extend and simplify the management of the infrastructure.

Figure 9 Portainer Orchestration UI

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 20 (42)

Portainer [7] is an open source graphical user interface to control the operation and orchestration of the

container environment, and directly plugs into Docker and Docker Swarm’s APIs. Portainer will be used

to manage the underlying infrastructure of the SERENA cloud and the edge gateways. Figure 9 shows

the Portainer graphical user interface, which greatly simplifies the management of the containerized
infrastructure. For example, the number of tasks running in a service can be increased simple by going

to the appropriate service and incrementing the spinner control. Portainer is itself implemented as a

resilient service and is one of the auxiliary services implemented by SERENA.

2.5 Ingestion Sub-system

The ingestion service is the connection between the SERENA cloud and the SERENA edge gateways.

It receives sensor data and metadata from the gateways and stores it in the SERENA cloud for
subsequent processing by the SERENA analytic service. The ingest service is implemented as a resilient

and saleable cluster of NiFi data process flow engines. Each engine is enclosed in a contained that runs

as a task under the control of the Docker Swarm infrastructure. If a give task fails or the overall service
needs to be scaled up to handle increased sensor data from the factory floor, Docker Swarm will start

new instances of the task.

The ingest service exposes a RESTapi endpoint over an SSL connection, which uses the SERENA
security service to mutually authenticate the entities and validate that the gateways are authorised to

send data to the service. All the tasks in the service share a common service port number, and incoming

traffic is load balanced between the available tasks in the server. The actual process flow is imbedded

within the engine and wrapped as a single container image running as a Docker task. As the
implementation and operation of the data process flow engines are stateless, any task in the service can

handle incoming traffic from any gateway.

The purpose of the ingest server is to receive sensor data and metadata, from the edge gateways,
as a single message, and split the data and metadata into two repositories, the data repository service,

and the metadata repository service. It also cross references the data and metadata between the two

repositories. The data repository service is the Cloudera implementation of Hadoop, which provides an

HDFS data store. The metadata repository is a combination of relational database, and a semantic layer
on top of it, capable of storing and referencing the metadata via both SQL and SPARQL queries. The

message is received in a canonical JSON-LD format, which is a self-describing message structure that

contains the data and a semantic context for the data.
The sensor data can be in a raw data format, as received from the sensor, or smart data format,

which has been pre-processed by the edge gateways to produce an aggregated feature set. The raw sensor

data is typically much larger than the smart data and is only forwarded to the SERENA cloud when
deeper analysis is required. The metadata contains data relating to how and where the sensor data was

acquired, as well as information relating to the specific piece of plant being monitored and its operation;

this data provides addition contextual information about the sensor data and is used by the analytics

service to search for relevant data and enrich its analysis.
The ingest service extracts the smart data and/or raw sensor data from the incoming message. Both

types of data are converted into sets of comma delimited strings and stored in flat files in the data

repository. Due to the size of the raw sensor data, it is stored in individual files, based on the collection
window metadata. Smart data may only consist of a single string, and thus is typically appended to an

existing file, whose collection window is defined in the metadata repository. If a new file is created, it

is given a unique UUID file reference, the file reference of existing files is retrieved from the metadata
repository. The ingest service also extracts the metadata from the incoming message and is converted

into an enhanced MIMOSA schema data format and stored in the metadata repository. The metadata

contains information providing context for the sensor data, such as the manufacturing operation being

performed by a robot over the data collection window. The metadata allows the analytics engine to
retrieve data based on the specific operation or configuration of the plant. The data file reference is

included in the metadata, so that the SERENA services, or external authorised systems, can retrieve the

required data. Thus, one of the functions of the metadata repository is as a smart index into the HDFS
data store.

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 21 (42)

2.6 Repository Sub-system

The data repository service stores the sensor data collected from the factories manufacturing process.

The data is received into the SERENA cloud and stored in the repository as comma delimited flat files,
however other filetype can be supported. The service is implemented as a Cloudera cluster running on

top of a Docker Swarm service cluster, so there is a one-to-one implementation mapping between a

Cloudera node and a Docker container. This enables the scalability and resilience of the Docker Swarm
infrastructure, combined with the Hadoop advanced functionality of Cloudera.

Sensor data stored in flat files on the data repository service will be cross referenced to metadata

in the SERENA metadata repository service, so files can be retrieved from the data repository using

SQL or SPARQL queries performed against the metadata repository. The data repository service can
also store files from other sources, such as the results from the analysis service. When the files are stored

in the repository, a matching entry will to be added to the metadata repository to cross reference the file

to its metadata.
The metadata repository service stores the metadata associated with the data collected from the

factory manufacturing processes, as well as other types of metadata, such as configuration data of the

factory. The service is implemented as a resilient Docker service cluster. The metadata repository
schema is based on the MIMOSA data model. The full MIMOSA data model covers many business

areas, such as configuration management and resource management, and includes hundreds of

connected tables; however, SERENA only requires a subset of these tables. Only the required tables will

be implemented to support the SERENA functionality. Similarly, many of the MIMOSA tables contain
optional fields which are not required for the SERENA system, so, to simplify the implementation, these

fields will also be removed. SERENA needs to implement concepts that are not currently supported by

the MIMOSA data model, in these cases, the MIMOSA data model will be extended to support the
SERENA requirements.

The metadata repository will consist of a relational database with a semantic layer on top of it. The

metadata repository service will expose two APIs, an ODBC endpoint and a SPARQL endpoint. The

ODBC endpoint is a standard relational database connection and will allow other SERENA services and
external entities to perform SQL operations on the metadata. The SPARQL endpoint provides a more

expressive semantic interface to the metadata. Both APIs fundamentally access the same metadata, and

applications can choose the interface that best meets their requirements, however as the semantic
interface is more expressive, so some metadata will only be available via this interface. The interfaces

support the full range of CRUD operations, but access to operations and classes of metadata are

dependent on the authorisation level of the requesting system.

2.7 Processing Sub-system

It is known that the most popular languages for data scientists are Python and R. Both provide many

modules or packages to solve data problems. But these tools traditionally process data on a single
machine where the movement of data becomes time consuming and moving from development to

production environments requires extensive re-engineering.

To help address these problems, Spark [8] provides data engineers and data scientists with a
powerful, unified engine that is both fast and easy to use. This allows to solve data analyses problems

interactively and at much greater scale.

Spark also provides many language choices, including Scala, Java, Python, and R. One of the most

used components developed in the Apache Spark Open Source ecosystem is MLlib [9], a general-
purpose library, providing algorithms for most use cases. The key benefit of MLlib is that it allows data

scientists to focus on their data problems and models instead of solving the complexities surrounding

distributed data (such as infrastructure, configurations, and so on).
For the above-mentioned reasons, and the presence of Spark in the Cloudera distribution, the design

the SERENA Cloud Platform foresees (but without defining strong technical constrains) the adoption

of Spark as the batch/stream processing engines, and Python as the preference language to build the

analytics algorithms on top of the data arriving to the cloud repository.
Further details on the analytics framework can be found in D3.1 and in the other outcomes of WP3.

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 22 (42)

2.8 Plug-n-Store Sub-system

SERENA’s plug-n-play storage facility extends Docker’s external volume functionality by

implementing a SERENA storage driver. The storage driver is a key component that separates the
SERENA subsystem components from the underlying storage implementation. SERENA uses container

technology to encapsulate discrete parts of its functionality, such as databases and analytics engines.

This makes the SERENA system highly dynamic, scalable, and resilient, as each subsystem can be
implemented as a cluster of stateless clones. The state of the cluster is externalized from the cluster

containers by means of the SERENA storage driver, which maps the container’s storage state to virtual

volumes, where individual data assets are represented as storage objects. The storage driver, and the

underlying storage virtualization infrastructure, synchronise access to the storage objects. When the
individual containers in the subsystem cluster change location or new containers are instantiated, the

virtual volumes are made available to the containers at their new location.

2.9 Internal communications

The following diagram depicting the high-level communications/data flow between the system and

subsystem components developed within WP5.

2.10 Hardware architecture

2.10.1 Development Infrastructure

The infrastructure designed for the project pilots is based on the Hadoop ecosystem as far as the saving,
the management and the analysis of big data is concerned. To simplify and speed up the installation and

configuration of the environment we foresee to use a development infrastructure hosted in a dedicated

tenant provided by ENG only for development purposes. This tenant is equipped with a software stack

based on Cloudera Manager [11]. Specifically, the main components being selected are:

• HDFS

• YARN

• Spark

• Hive

• Impala

• HBase

• OOziei

• Zookeeper

Figure 10 Main information flow related to the SERENA Cloud Platform

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 23 (42)

The data flow coming from the edge gateway must be saved both on HDFS and on a relational database

using a Mimosa data model subset. To this end Apache Nifi will receive incoming data, and thanks to

dedicate flows, aimed at verifying the goodness and adequacy of the data received, data flow will be
saved on the Hadoop file system in a raw format and simultaneously on database containing the metadata

describing the raw data received. On top of this data, the analytics component will be able to start

processing both data at rest and data in motion.

2.10.2 Pilot Infrastructure

The SERENA cloud is implemented in a dedicated SERENA tenant cloud on DELL's Infinite testbed,

its components can only be accessed via an isolated virtual network implemented using VMware's NSX
facility; access security is provided over a secure client channel. As the SERENA cloud can only be

accessed over a secure channel to the client, even edge gateways must implement the secure channel.

The cloud consists of several VMware virtual machines, which host Docker containers. All SERENA's

cloud based functional components are implemented in containers, to provide agility of deployment and
abstraction from the underlying physical or virtualisation infrastructure.

The hosts that make up the SERENA cloud are VMware virtual machines running the Ubuntu

operating system; the hosts are a mixture of desktop and server implementations of Ubuntu version 18.
The mixture of desktops and server hosts allow for different component requirements to be supported

by the SERENA cloud. The Ubuntu variant of Linux was selected as the host operation system because

it is open source and well supported in the IT industry.

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 24 (42)

3. System interfaces

3.1 Human – machine interfaces

3.1.1 3D viewer

3.1.1.1 Purpose

The purpose is to show and present in an effective and intuitive mode the data and maintenance

operations with a virtual 3D view of the involved machinery/equipment, using the information coming

from the results of the predictive maintenance algorithms of the SERENA platform. The data

visualization will be used as a SaaS application, so it will be developed as a web application that can be
deployed on a cloud. A WebGL HTML5 Unity 3D interactive application will be created, to show in a

web browser, the corrective actions and guidance for maintenance operator within the factory.

3.1.1.2 Inputs

To better display the goals of the predictive maintenance, with an effective and intuitive visual impact,

it is important to have at least a simplified but realistic 3D view of the machinery/equipment, showing

the maintenance guidance and information directly on their mechanical, electrical etc. elements/parts.

The main required inputs are detailed below:

• 3D CAD simplified model export of the involved machinery or system (STEP format); this will be

used in the construction of the virtual scene, porting it from the vector system to the rendering one

(mesh triangulation), to make the virtual scene as light and usable as possible. In this way the
engineering information of the CAD model are lost, so the VR/AR scene can be distributed without

risk.

• User defined messages to show warning and alert alarms directly on the part involved of the system

to immediately capture the operator's attention and provide an intuitive indication of what he will
have to check.

• Preventive and predictive textual information to be displayed by selecting the involved part of the

machinery/robot/system, which indicate high-level maintenance operations.

• Maintenance technical manuals from which extract the detailed maintenance procedure for the

involved components and systems.

Practical tips and suggestions from expert personnel to better and accurately identify the maintenance

activities.

3.1.1.3 Outputs

The development will focus on Unity 3D WebGL technology. This allows Unity to publish content as

JavaScript programs which use HTML5 technologies and the WebGL rendering API to run Unity 3D

content in a web browser. The applications will consist of interactive virtual scenes in which the
machinery/equipment will be displayed in 3D, adding information coming from data collected and

processed in the SERENA platform.

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 25 (42)

The interaction with the maintenance operator and the Unity 3D virtual web scene consist on these

features:

• Move/rotate/zoom of the 3D model in the space of the virtual scene

• Show in a visual mode (set colour/blink mode/led status indicator etc.) to the operator any alarms
and anomalies directly on the part of the machinery which have problems, to capture the operator's

attention and better understand on which part of the system he will have to operate

• Report in an informative panel the textual instruction and corrective action to be performed

• Display maintenance technical manuals

• Display virtual 3D interactive maintenance procedures, to make maintenance procedures more

intuitive and effective even for less experienced personnel

This layer will provide the necessary methods to communicate and exchange information from the

SERENA web pages to the Unity 3D WebGL application and vice versa.

3.2 External interfaces

All the communication from the edge gateway to the cloud platform will be further discusses in the

scope of D2.1, please refer to this deliverable to complement the platform design provided within this
document.

Figure 11 SERENA 3D viewer web-based visualization

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 26 (42)

4. Integrity controls

Whenever data of any kind is sampled, acquired, or read from a source, it must be validated to ensure
the quality of the measurement and the derived data. Especially in long term data capturing like done in

SERENA, where many different steps of data transformation and analysis are performed subsequently,

it is very important to include validation mechanisms into the dataflow.
The most important task for the SERENA DataBox is to ensure the correct timestamping of the

data and a proper synchronisation of all component clocks. To realise this in the SERENA system,

different protocols and other methods will be discussed to achieve enough accuracy for the timestamping
of the collected data.

The validation of each measured/sampled value is another issue. Even in modern measurement

systems, outliers occur and must be detected by a suitable filter algorithm as soon as possible. Which

algorithms can be used and included/executed in the DataBox Software is still subject to discussion
within WP2.

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 27 (42)

5. Operational scenario

The SERENA project is focused on the maintenance advanced techniques. The actual operational
scenario provided by COMAU is based on scheduled maintenance using indications provided by

supplier manual. The scheduling is contained in a machine ledger. Maintenance operations are planned

during production stops to avoid downtime, therefore, preventive maintenance is very conservative, and
machines are over-maintained. This approach does not consider machines real conditions and it could

be uselessly expensive.

The purpose of the project is to create a monitoring and analysis system which allows the
exploitation of all the components’ life before the breakdown, enabling the condition-based maintenance

and the reduction of maintenance costs increasing the equipment availability. Thus, the SERENA project

will avoid the over maintenance of the components due to the preventive maintenance activities.

The purpose is to predict the possible failures of robots which is executing repeated operations.
This will be achieved by gathering data through multiple sensors and processing all these measurements

to create accurate models adequate to the real one. Furthermore, the scheduling of the maintenance

operations is quite important in a production line both in terms of cost and time. Thus, apart from
predicting accurately the failure, SERENA project will try to take into consideration the specific needs

of the production line to optimize the maintenance process and plan the stoppage for maintenance.

Moreover, the maintenance flowchart will be updated to reduce the actors involved during a
possible failure. More specifically, a possible failure or the health status of its components can be

observed using a software. This software will be able to monitor the signals and measurements and

identify a possible abnormal behavior. Thus, the physical existence of the operators is not needed to

validate the error of the handling process. Furthermore, the implemented software can help the
maintenance engineer, providing helpful decision proposals or even taking full control if instructed to

do so. In this way, the maintenance activities to be performed can be instructed with a more precise and

fast way to reduce cost and time in the production line.
A COMAU software can collect raw data using FTP protocol from the Robot Controller and send

them to a centralized database or a Cloud using the standard protocol HTTP Rest or MQTT over a secure

channel. The software developed for the robot analysis can access to the raw data and send some features

to the same database or cloud. In the Cloud solution, some appropriated security policies must be
implemented. In the on-premise solution, the security policies depend from the other aspects (e.g.

physical access to the wired network for the unauthorized people).

To sum up, the SERENA system and architecture will be able to securely get data from the
manufacturing plants – using scalable and cross-platform solutions – and use them to build a virtual

status of the components to predict future faults and schedule maintenance activities only when it is

necessary improving both the availability and the maintenance costs.

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 28 (42)

6. Conclusion

This deliverable described the first results of the tasks T5.1, T5.2, T5.3, T5.4 and T5.5, providing the
high-level design of the SERENA Cloud Platform and outlining its implantation (to be further refined

in WP2, WP3, WP4 and WP5 itself) before starting the piloting and validation activities within the WP6

scope. These results have been driven by earlier work and results from WP1, notably the analysis of
requirements and reference applicative business scenario.

The baseline of the SERENA implementation can be existing open source frameworks, platforms,

and tools, including background assets belonging to project partners. The integration of these tools has
been designed to achieve the project objectives (e.g. the plug-n-play approach), taking also into account

the commodities needed for easing the deployment (e.g. using Docker) and lifecycle management of

such a cloud platform in different cloud infrastructure, provided by different CSP or even using an on-

premises installation.
Overall, this document provides a sound basis for development and integration activities that will

be performed as part of technical work packages, notably WP2, WP3, WP4 and WP5. It defines the

main components and structuring principles of the SERENA Cloud Platform, also in terms of
implementation tasks: this will ensure that inter-dependant activities can be streamlined in the best of

ways. Hence, the document will be a valuable input for all partners engaged in technical design and

software development and integration to release the overreaching SERENA solutions.
The SERENA Cloud Platform design will also drive the implementation of use cases in the scope

of WP6. In general, use cases might require some customization, however not impacting on Platform

components described in this document. Identified components might be extended, provide they are

backward-compatible – i.e. systems using the standard interfaces are not affected.
It should be noted however that development and integration activities are likely to introduce

revisions to this Platform design, resulting from new findings and technological choices made during

the detailed design and implementation of individual components, as well as changes in requirements
and use cases.

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 29 (42)

References

[1] https://ieeexplore.ieee.org/document/7733707/
[2] https://www.docker.com/why-docker

[3] https://hub.docker.com/

[4] https://dl.acm.org/citation.cfm?id=3029832
[5] https://kubernetes.io/

[6] https://docs.docker.com/engine/swarm/

[7] https://portainer.io/
[8] http://spark.apache.org/

[9] https://spark.apache.org/mllib/

[10] http://infographic.lab.fiware.org/

[11] https://www.cloudera.com/products/open-source/apache-hadoop/key-cdh-components.html

https://ieeexplore.ieee.org/document/7733707/
https://www.docker.com/why-docker
https://hub.docker.com/
https://dl.acm.org/citation.cfm?id=3029832
https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://portainer.io/
http://spark.apache.org/
https://spark.apache.org/mllib/
http://infographic.lab.fiware.org/
https://www.cloudera.com/products/open-source/apache-hadoop/key-cdh-components.html

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 30 (42)

Annex A – Requirements extract from D1.1

This annex provided an extract of D1.1, focusing on the requirements foreseen for the WP5 outcomes.

Functional requirements

Id Name Description Requirement Priority

1 Ingestion
layer

This layer deals with the
task of collecting data from

several sources, performing

some pre-processing
workflow, and saving them

in the Data Infrastructure.

The data ingestion can gather data in
real time fashion as well as in batch,

depending on the source and on the

use-case.
The ingestion layer will provide API

for streaming data (e.g. using REST

services with data represented in

JSON), as well as capabilities to use
the Claim Check Pattern for

asynchronous ingestion data transfer.

The ingestion of large amount of data
can be scheduled and gets data from

FTP directories where files collected

from the plant are available (e.g. on
daily basis).

High

2 Storage

Layer

The storage layer is

responsible for the

persistence of raw data
collected by the ingestion

process and data which is

the result of the distributed
processes and analysis

within the data lake. There

are different storages that

can be used, such as
distributed file system or

NoSQL database.

Distributed file systems will be used to

make persistent large amount of data,

while relational or NoSQL database
can be used for metadata of fine-

grained feature sets.

HDFS will store incoming data from
the ingestion process and the datasets

computed by the algorithms. Data

archived on the distributed file system

is formatted properly and partitioned

by equipment, year, and month.

High

3 Batch
Processing

layer

Once data is landed on the
cloud storage it must be

processed, cleaned, and

analysed.

Data should be processed by the
distributed framework, capable of

managing huge amounts of data,

dealing with cleaning tasks as well as

analysis through custom algorithms
for predictive maintenance objective.

The batch jobs are scheduled and

executed evenly across the cluster

every day.

For instance, this layer could perform

Spark jobs running on Yarn Hadoop
Resource Manager.

High

4 Stream

Processing

layer

Streaming pipelines can be

developed, for instance by

using Spark Streaming

libraries.

It allows data to be filtered, processed,

aggregated, and analysed event by

event so that real-time results are
available.

Medium

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 31 (42)

5 Data
Access

(SQL) layer

To access files stored in the
data infrastructure, as a

result of the advanced

analytics run by the batch
processing layer, a SQL

layer is configured.

This tool will act as a gateway for
applications that need to publish

information generated in the data lake

through a front-end UI, as well as
perform some additional query,

benefitting from the parallel

computation that can be run on the
platform. Impala could be one of tool

that allows Business Intelligence

application to perform insights on the

cloud storage

High

6 Scheduler Scheduling and

orchestrating activities.
This layer should address the

scheduling of batch jobs and

orchestrate them through a proper

workflow of different actions.

Within the current Hadoop-based

scenario, this task can be dealt by

Oozie.

High

7 Resource

Manager

All Big Data distributions

allow distributed jobs to be

executed in the cluster,

where data is hosted.

Different jobs are run on the available

nodes in the platform, considering the

resources in terms of RAM and CPU
and the data locality of the partitions

of the files to be processed. All these

tasks could be managed and scheduled

by YARN, which is the resource
negotiator of Hadoop.

High

8 Cluster

Manager

Every Big Data distribution

offers a tool to manage the
cluster, in terms of hosts and

services.

A web application, made for

Administrator, should enable them to
master the platform.

High

9

SERENA

Communic

ations
Broker

(SCB)

The SCB will be providing

the infrastructure needed to
make all the other modules

of the SREEAN ecosystem

talk each other.

The SCB will act as a proxy

forwarding server between SERENA
components.

High

10 The SCB will provide a HTTPS/REST

endpoint for the proxy forwarding

server.

High

11 The SCB will add the original source

of the message, to the message, to

provide the provenance of the data

High

12 Data from the sender will be
transferred in the body of the REST

message in JSON format.

High

13 Larger amounts of data can be
attached to the REST message as

MIME files. The content of the MIME

file is undefined and will be forwarded

to the target unaltered. This provides a
mechanism for components to

exchange images, binary files, PDFs,

etc.

Medium

14 The SCB will implement publish and

subscribe functionality, which will

High

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 32 (42)

decouple the sender from the target by
means of a topic subscription, see

http://www.enterpriseintegrationpatte

rns.com/patterns/messaging/PublishS
ubscribeChannel.html

15 The sending component will specify

the topic of the message in the URL, in

the form “/topic/<topic>”

High

16 The SCB will provide a REST API for

senders to request a list of all valid

topics that they are authorised to
communicate with.

Medium

17 The SCB may be enhanced by the

“Round Robin” functionality,

http://www.workflowpatterns.com/pat
terns/resource/push/wrp16.php. In the

SERENA form of Round Robin

functionality, the target components
will subscribe to a topic. If there is one

subscriber, a message posted to that

topic will be forwarded to that

subscriber. If there are multiple
subscribers, a message posted to that

topic will be forwarded only one of the

subscribers, and the next message will
be sent to a new subscriber, in turn. If

there are no subscribers, the message

is queued for a period until a
subscriber register with the SCB. This

is a scalable pattern designed to

decouple the sender and the receiver,

whilst providing a robust and scalable
system

Medium

18 The SCB may be enhanced by Claim

Check functionality,
http://www.enterpriseintegrationpatte

rns.com/patterns/messaging/StoreInLi

brary.html. In the SERENA form of

Claim Check functionality, the sender
specifies the repository the data is to

be stored in and the target/topic to be

notified when the data storage is
completing; the target/topic is sent a

claim check token by which they can

retrieve the data from the repository.

Low

19 The SCB will implement lifecycle
management of data that has been

stored under the Claim Check

functionality, including i) an expiry
data after which the data will be

deleted; ii) whether the data should be

deleted after it has been claimed; iii)

Low

http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/PublishSubscribeChannel.html
http://www.workflowpatterns.com/patterns/resource/push/wrp16.php
http://www.workflowpatterns.com/patterns/resource/push/wrp16.php
http://www.enterpriseintegrationpatterns.com/patterns/messaging/StoreInLibrary.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/StoreInLibrary.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/StoreInLibrary.html

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 33 (42)

whether the claimer has the right to
access the data

20 The SCB will provide message

transformation functionality to
convert one message format into

another. The transformations will be

limited to data in the body of the

message and will support a
restructuring of the data or conversion

to another message format, such as

XML.

Medium

21 The SCB will provide an API to able

SERENA components to register with

the SCB’s component repository. The

API will be in the form of a REST
endpoint.

Low

22 The SCB will ensure that all

communications between components
(including edge devices) are over

secure channels, typically using

HTTPS or TLS

High

23 The SCB will ensure that all
communications traffic, passing

through the SCB and based on the

security policies, will i) be from an
authenticated source; ii) will only be

forwarded to authorised targets/topics

for that specific sender; and iii) the

target is authorised to receive the
message from the sender.

Medium

24 The SCB will keep an audit log of all

communications traffic between
components (communications event

only, not data).

Medium

25 The SCB will periodically send the

communications audit log to the
SERENA Security component.

Medium

26 The SCB will provide a REST

interface to monitoring and

management its operations. Only
authorised components and HMIs will

be allowed to access this interface.

High

27 SERENA
Repository

API (SRA)

SERENA Repository API
(SRA) will provide a

common interface,

regardless of the underlying

storage implementation.

The SRA will implement a REST
endpoint for the “algorithm and

initialization parameters” repository.

The repository holds all algorithms,

parameters, etc. user by the predictive
maintenance/Cloud AI components.

High

28
The SRA will implement a REST

endpoint for the “historical data”
repository. The repository holds

sensor data (either raw data or smart

High

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 34 (42)

data) sent from the Edge to the Cloud,
which may be required for historical

reports, stochastic analysis, etc.
29 The SRA will implement a REST

endpoint for the “metadata”

repository. The repository holds all

metadata relating to the sensors, which

comprises of sensor metadata about
the actual data being collected, such as

the measurement frequency, and

sensor context metadata about the
situation/purpose of the sensor, such

as the piece of machinery it is

measuring

High

30 The SRA will implement a REST
endpoint for the “scheduling

information” repository. The

repository holds all data relating to the
scheduling of events within the

SERENA system, such as uploading

data from Edge devices.

High

31 The SRA will implement a REST
endpoint for the “documentation and

media” repository. The repository

holds documents, videos, images, etc.
user by the SERENA system, or

provided to users of the system.

High

32 The SRA will implement a REST

endpoint for the “component” registry.
The registry holds a list of all

component instances in the SERENA

system, their type, and details on their
communications channels. The

registry is used by the SERENA

communications broker to manage
message traffic between components.

Medium

33 The SRA will implement a REST

endpoint for the “security” repository.

The registry holds all SERENA users,
components, roles, and policies. It also

contains the audit logs collected by the

SERENA Communications Broker.

High

34 The SRA will store data in the form of
data objects. A data object can also be

a file or dataset. Many data stores,

such as S3, ECS and HDFS,
intrinsically handle data object. Where

the underlying data store is a relational

or column database, a facility will be

provided to insert or retrieve data from
the underlying implementation.

High

35 The SRA will ensure that users or

components are authorized to read or

High

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 35 (42)

write to specific data objects, or types
of object.

36
The SRA will encrypt data objects at

rest, based on defined security
policies. This feature is reliant on the

technology of the underlying data

store supporting encryption

functionality.

Medium

37
When writing a data object to a

repository, a component may request

the SRA to encrypt the object.

Low

The SRA will provide a REST
interface to search the repository for a

data objects that match a specific type

or pattern. The requester will be
provided with a list of matching data

objects. If the list is too long, the

requester will be provided with a
truncated list, and warned to provide a

more specific query. The type of

search format will depend on the

nature of the data objects in the
repository. For example, the document

and media repository may be restricted

to text searches, whereas the metadata
repository may use a more expressive

query such as SPARQL

Medium

38
The SRA will provide data object

facilities to manage its lifecycle, such
as the data object is immutable or is to

be deleted once it has been read at least

once.

Medium

39
When writing a data object to a

repository, a component may specify

optional lifecycle parameters relating

to the object, such as an automatic
deletion date.

Low

40
The SRA will provide a REST

interface to monitoring and
management its operations. Only

authorized components and HMIs will

be allowed to access this interface.

High

41 SERENA
Security

Manager

(SSM)

SERENA Security Manager
(SSM) provide secure

access to internal data and

processes, to users and
systems.

The SSM will conform to the
corporate security policies.

High

42
The SSM will authenticate all users of

the SERENA system, assign them

roles, and assess control policies to
data and processes, which are

contained in the user’s profile. For

High

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 36 (42)

example, a maintenance engineer may
be able to see the results of predictive

analysis process but is not authorized

to run the analysis process.
43

Where available the SSM will connect

to existing corporate user

authentication and authorization

systems, such as Active Director or
LDAP, as the primary source of

authentication and authorization

information. The SSM will defer
security policies to the corporate

security system, where it exists. This

means that if a user’s policies are
changed in the corporate security

system, the changes will be reflected

by the SSM.

Medium

44
The SSM will implement a basic user
authentication and authorization

system to be used if no corporate

system is available.

High

45
The SSM provides additional security
policies that are specific to the

SERENA system. For example, the

policies that control access to data
types in specific repositories.

High

46
The SSM will authenticate all

component instances that make up the

SERENA system. When a new
component is instantiated, it must be

authenticated and allocated to role

within the system. The role defines
what data the instance is authorized to

access, and which processes it is

allowing to invoke, which are
contained in the instance’s profile.

High

47
The SSM maintains all SERENA

roles and security policies in the

security repository, in the form of
profiles. Functionality will be

provided for the system administrator

to view, add, amend, and remove
security roles and policies.

High

48
The SSM security policies will cover

the access control to data artefacts,

based on a user’s or component’s role.
Data artefacts will be allocated a

default role based on their type, but

these roles can be overridden for

specific data artefacts. For example, an

High

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 37 (42)

instruction manual may be accessible
to system users, but manuals

containing restricted information, such

as access codes, may only be
accessible to maintenance operators.

49
The SSM security policies will cover

the encryption of data artefacts, based

on the policies for specific data
artefact types, but these policies can be

overwritten for individual data

artefacts.

High

50
All data in transit will be transmitted

over secure encrypted channels, such

as HTTPS and TSL, with at least 256-

bit encryption.

High

51
Where defined by security policies,

data at rest will be stored with at least

256-bit encryption. This may be
superseded for specific

implementation environments. For

example, a SERENA system

implemented on a CSP’s public Cloud
may have to conform to their specific

security schema. Encrypting all data

artefacts may not always be necessary
or efficient. For example, there is no

reason to encrypt a product manual

that is publicly available on the
Internet and doing so may preclude

artefacts from being searched in the

repository.

High

52 Sensor Data
and

Metadata

Sensor and machineries will
produce raw data that

eventually could be turned

into smart data; in any case
metadata will be added to

them to add context or static

information useful to

exploit them in the overall
system.

Sensor metadata describes
characteristics of the raw data

collected by the Edge devices and

forwarded to the SERENA Cloud. A
sample of the types of metadata

includes i) sampling frequency of the

sensor; ii) the physical property being

measured; iii) the measurement units;
iv) the time and data of collection; and

v) notification of missing data

samples.

High

53
Sensor context metadata describes

context of the sensor and is typically

defined in the SERENA Cloud and

forwarded to the Edge devices. A
sample of the types of metadata

includes i) the ID of the sensor; ii) the

piece of machinery it is measuring; iii)
the status of the sensor; iv) the purpose

High

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 38 (42)

of the measurement; v) the location of
the sensor on the machinery; and vi)

the location of the machinery.
54

The metadata will have multilingual
support.

High

55
The metadata will support dynamic

and extensible schema(s).

High

56
The SERENA system will define one
or more new, or preferable existing,

metadata schema(s) to define the

entities, terms, and relation that

makeup the SERENA system.

High

57
The sensor metadata and sensor

context metadata will be using a

defined using Linked Data as defined
by the W3C standard

High

58
The metadata will message format will

be JSON Linked Data (JSON-LD)

High

59
Both the SERENA Cloud and the
Edge devices will have metadata

repositories. The SERENA system

will implement a mechanism to

exchange metadata between Edge
devices and the Cloud repositories.

The SERENA Cloud repository will

hold a copy of all metadata for the
system, whereas the Edge device will

only contain metadata that relates to its

sensors and the manufacturing
processes it manages. The metadata

exchange mechanism will ensure that

the various repositories are kept

eventually consistent.

High

60
The sensor data will be linked to the

sensors metadata by means of a

universally unique identifier.

High

61
The sensor data will be aggregated
into data packages by the Edge device

and pushed to the SERENA Cloud or

pulled from the Edge device by the
SERENA Cloud.

High

62
The sensor data can be sent in the body

of a REST message in JSON format or

attached to the REST message in a
supported MIME format.

High

63 Component

Container

SERENA Component

Container (SCC), see
individual functional

The SERENA components will, in

general, be deployed in a containers or
nested containers.

High

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 39 (42)

64 requirement priority. Only
high priority items are

planned to be delivered,

medium and low priority
items are stretch goals, and

will be implemented if time

allows.

The SERENA components will be
defined as templates, which can be

instantiated as the system requires

their services.

High

65
The SERENA components instances

will be deployed in managed clusters,

to ensure that their common

functionality is both scalable and
resilient. Where possible the rest of the

SERENA system should access the

cluster as a single entity.

Medium

66
The SCC will provide functionality to

enable inter-container communication

High

67
The SCC will police inter-process

communication based on component
policies defined by the SERENA

Security Manager. This principal will

provide multiple layers of security for
the SERENA system.

High

68
The SCC will manage the lifecycle of

component instances by managing the

lifecycle of the underlying containers.

High

69
The SCC will be able to group and

manage sets of containers instances as

a single functional unit. For example,

a component may be broken down into
several function sub-components, of

different type, that function.

High

70
The SCC will provide a management
interface to allow System

Administrators to manage the

operations of the SCC and the

container instances.

High

71
The SCC will manage the access to

resources

High

External Interface Requirements

Id Name Requirement

1 Presentation Layer In the reference architecture,

this layer shows the results of

the predictive maintenance
algorithms run on a huge

amount of data collected from

the field by the batch processes
described above.

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 40 (42)

Non-functional Requirements

Id Name Requirement

1 Performance The SERENA Communications

Broker (SCB) is an important
component within the overall

SERENA system, and therefore

needs to be scalable and

resilient, as well as having a low
latency. To facilitate these

performance requirements, the

SCB will be implemented as a
cluster of separate broker

processes, which operate as a

single component. If the

performance of SCB is
degraded due to the traffic load,

new broker processes will be

started and join the cluster.
Likewise, if the traffic load on

the SCB decreases, broker

processes will leave the cluster
and be stopped. If a broker

process terminates, a new

broker process will be started to

take its place.

2 Data encryption to protect sensible data Data will be guaranteed by

using servers implementing

multiple levels of security to
protect and back up files such as

encryption methods to transfer

and store data, Secure Sockets

Layer (SSL) and AES-256 bit
encryption

3 Software Quality
Scalability requirements are

dependent on the manufacturing
domain. The following

requirements should be

supported by the SERENA

Cloud Platform as a baseline:

• Scalability must be easily

“implemented” i.e. the

SERENA Cloud Platform
should scale easily and in

a cost-effective fashion.

• In some domains cross-

factory scalability is
needed in the future to

support virtual

production networks (e.g.

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 41 (42)

in the plant-to-plant

scenario).

4 Interfaces The SERENA Communications
Broker (SCB) will be

implemented as a cluster of

individual broker processes.
However, the other SERENA

components will perceive the

SCB as if it was a single entity.

Therefore, other components
will access the SCB using a

common network address

5 Implementation The SERENA

Communications Broker

(SCB) is an abstraction of the

API and behaviour the SCB

provide; it does not prescribe

the type of technology used to

implement it, or the

environment it is

implemented in. The

SERENA Cloud will follow

the microservices

architecture pattern, but the

design must be flexible

enough to be implemented as

an on-premise Cloud or in a

CSP’s public Cloud offering.

b. The SERENA

Repository API (SRA) is a

definition of the API and its

behaviour; it does not

prescribe the type of

technology used to

implement it, or the

environment it is

implemented in. The

SERENA Cloud must be

flexible enough to be

implemented as an on-

premise Cloud or in a CSP’s

public Cloud offering.

c. The SERENA Security
Manager (SSM) is a definition

of the API and its behaviour; it

does not prescribe the type of
technology used to implement

it, or the environment it is

D5.1 SERENA cloud-based platform for remote diagnostics

2018-09-28 Public 42 (42)

implemented in. When the
SERENA Cloud is deployed in

a CSP’s public Cloud offering,

the CSP could impose a
different security schema, that

by necessity will take

precedence over the SERENA
security schema.

