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Abstract 

This paper discusses on the design, development and deployment of a flexible and modular platform supporting smart predictive maintenance 
operations, enabled by microservices architecture and virtualization technologies. Virtualization allows the platform to be deployed in a multi-
tenant environment, while facilitating resource isolation and independency from specific technologies or services. Moreover, the proposed 
platform supports scalable data storage supporting an effective and efficient management of large volume of Industry 4.0 data. Methodologies of 
data-driven predictive maintenance are provided to the user as-a-service, facilitating offline training and online execution of pre-trained analytics 
models, while the connection of the raw data to contextual information support their understanding and interpretation, while guaranteeing 
interoperability across heterogeneous systems. A use case related to the predictive maintenance operations of a robotic manipulator is examined 
to demonstrate the effectiveness and the efficiency of the proposed platform. 
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 Introduction 

Several research efforts have been conducted concerning the 
design and development of distributed architectures to 
effectively support Industry 4.0 needs with respect to recent 
advances in the field of information and communication 
technology (ICT). Existing solutions include among others: (i) 
the integration of the existing production system with legacy 
systems and advanced Internet of Things (IoT) technologies as 
discussed in [1]. To this aim, the key ICT technologies are 
based on virtualization and a cloud-based service architecture. 
(ii) A distributed system architecture to enable predictive 
maintenance [2]. (iii) Fog Computing, a new architecture 
enabling on-demand computation to offload the computation in 

the cloud architecture, reducing unnecessary network overhead, 
by properly selecting the most effective edge devices as 
computation delegates[3][4]. 

This paper discusses on a lightweight, resilient, and scalable 
architecture based on microservices for enabling predictive 
analytics at the edge level of a cloud system. Considering the 
security aspect of the proposed architecture a multi-level 
authentication mechanism and its implementation  is discussed 
in section 4. As a case study, the proposed architecture 
implementation coupled with the one required for testing 
applications has been deployed and connected to a robotic 
industry testbed. 
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 Literature review 

Current production systems are in their majority based on 
monolithic software solutions. This causes a lack of flexibility 
adaptability scalability and makes their maintenance complex. 
Service Oriented Architectures (SOA) were introduced to 
overcome these drawbacks. However, the increased complexity 
of modern manufacturing systems requires increased flexibility 
and further distribution of underlying functionalities. In fact, 
with the implementation of cyber physical production systems 
isolated services have resulted on utilizing versatile hardware 
and software components [5]. Consequently, flexibility as a 
result of increased automation levels are challenging. In this 
context micro-services are gaining momentum. In particular, a 
micro service can be defined as an independent part of a 
software interacting with via lightweight mechanisms, as 
mentioned in [6], where a classification framework for 
evaluating architectures is provided. A process consisting of 
four discrete steps is presented in [7] to decompose monolithic 
applications to microservices. Microservices provide mainly 
modelling and design principles to implement lightweight, 
scalable, and most important distributed applications. This kind 
of granularity facilitates the modelling, development as well as 
maintenance of applications. Nevertheless, the operation of 
microservices require more runtime environment environments 
to be distributed increasing their computational and network 
resources consumption [8]. 

IoT devices generate large volumes of data which are usually 
processed in a cloud system to enable on-demand services as 
well as scalability to future needs. One of the key challenges is 
the allocation of resources as well as the security aspect. The 
first give birth in recent years to a decentralized computing 
paradigm, the fog computing [9]. A review of the recent fog 
computing trends and applications is provided in [10], where 
among other challenges the application service and resources 
management as well as communication between layers along 
with security and privacy are highlighted. 

A design methodology to embed analytics capabilities in 
modular microservices is presented in [11]. In this context, a 
monitoring system enabled by fog network, functionally and 
geographically decentralized is discussed in [12]. The proposed 
system is used for data monitoring in an industrial environment 
enabling predictive maintenance of a flexible assembly line. 
Moreover, IoT features have been used to enable real time 
condition monitoring and fault detection in the UK water 
industry [13]. The edge device collects and transmits data from 
the edge while analysis is performed at a network node, 
concluding that the proposed system potentially provides a low 
cost and flexible industrial solution.  

To improve the scalability and flexibility of application 
development microservices are coupled with Docker containers 
[14]. According to [15] container virtualization is a lightweight 
solution to guarantee quality of service in IoT devices. A 
resource allocation algorithm is discussed in [16] to minimize 
the deployment cost. Moreover, a two-level orchestration 

approach based on microservices and containerization 
technologies is proposed in [17] for adaptive planning and 
control towards enabling reconfigurable cyber physical 
production systems. Moreover, Kiss et al. in [18] propose an 
automated orchestration for cloud applications using 
microservices. In addition, the time aspect of microservices is 
investigate in [19] with regards to the development and 
deployment of time critical microservices. 

 Platform architecture 

The proposed architecture is comprised of several logical 
components, which collectively provide its predictive 
maintenance functionality. These logical components reside on 
a cloud host, but the functionality extends to the edge gateways 
and sensors on the factory floor. Additionally, the platform is 
intended to be flexible enough to be hosted on either an on-
premises environment, a cloud service provider (CSP) 
environment, or a hybrid of the two. 

In order to address these requirements, the proposed system 
has been designed on a micro-services architecture pattern [20], 
where each logical component is a service. Each service 
communicates and collaborates with other services to perform 
its specific function, and extends to other components, such as 
the edge gateways. The described platform has been designed 
with the purpose of being flexible in terms of deployment and 
use of technologies. As such, virtualisation techniques have 
been adopted to wrap microservices hosted in lightweight 
servers. The proposed architecture adopts a certain set of 
technologies, briefly mentioned below, without excluding their 
replacement with newer or different ones, depending on 
changing needs and requirements. Furthermore, other 
functionalities are included such as a) adaptive maintenance 
scheduling, driven from the prediction results; b) predictive 
analytics; c) visualisations tools.  

A high-level architecture view of the proposed platform 
architecture is presented in Figure 1. 
 

 

Figure 1: Architectural view 

The data ingestion layer, composed of both hardware and 
software assets, collects data from several plant-level sources. 
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In particular, the layer has been designed to enable the gathering 
of sensor data even from legacy factory equipment that 
otherwise could not have provided data to any kind of cloud 
facility.  

Before being sent to the cloud, where they will be stored into 
the platform repository, sensor data are pre-processed in order 
to transmit only the required data for the predictive analytics 
component. The data ingestion layer supports transmission of 
batch data collection as well as stream data in real-time, 
depending on the sources available at the deployment site. 

Next, incoming data flows go through a security 
management layer involving authentication, authorization, 
encryption, and data lineage features. Moreover, the security 
layer supports a mutual authentication mechanism while 
facilitating role-based access control policies. The security 
manager is detailed in subsection 3.1. 

After the security manager, the secured data messages go 
through the communication broker, i.e. NiFi. The 
communication broker coordinates the retention of the sensor 
data in the Data Store and of their metadata in the Metadata 
Store. Interaction with the Metadata Repository is achieved 
through the Metadata Web Service based on a REpresentational 
State Transfer (REST) Application Interface (API). 

The communication capabilities of the proposed platform 
have been designed in accordance with the emerging trend of 
developing standard-based maintenance solutions. The 
proposed platform adopts the MIMOSA schema [21], which 
defines a set of specifications and hierarchy that complies with 
existing maintenance and interoperability standards. The 
MIMOSA schema enables physical asset lifecycle 
management for manufacturing, providing a hierarchical 
context for sensor-related data and analytics. 

At the top of the MIMOSA hierarchy is the “Enterprise” 
which represents an organization or company. Under the 
“Enterprise” there are one or more “Sites”, which represent 
factories or even mobile manufacturing locations. “Sites” 
contain “Segments”, which are parts of a manufacturing 
process, such as a production line made up of “Assets”. An 
“Asset” is typically a piece of machinery or equipment that 
would appear in a bill of materials and have a manufacturers 
serial number. Finally, “Segments” are collections of “Assets” 
that have been put together to implement a manufacturing 
process. The proposed platform supports predictions made 
against both “Segments” and “Assets”. 

A JSON-LD message format has been implemented as a data 
transfer model creating linkages to the MIMOSA data model. 
JSON-LD enables context aware metadata. The ingest service 
extracts the smart data and/or raw sensor data from the 
incoming message. Both types of data are converted into sets of 
comma delimited strings and stored as JSON files in the data 
repository. Due to the size of the sensor data, it is stored in 
individual files, based on the collection window metadata. 
“Smart” data are obtained by processing raw data through some 
form of aggregation function. They may only consist of a single 
string, and thus is typically appended to an existing file, whose 
collection window is defined in the metadata repository. For 

example, the standard deviation of a set of sensor data, or a 
maintenance prediction performed on the edge gateway are 
considered as smart data in the context of this work. The same 
JSON-LD message also contains extracted metadata which 
contain contextual information for the sensor data, such as the 
manufacturing operation being performed by a robot over the 
data collection window. The metadata allow the analytics 
engine to retrieve data based on the specific operation or 
configuration of the plant. The data file reference is included in 
the metadata, so that the platform’s services, or external 
authorized systems, can retrieve the required data. Thus, one of 
the functions of the metadata repository is as a smart index into 
the Data Store, i.e. HDFS.  

The metadata configuration definitions have been populated 
into the metadata repository. While raw data, including sensor 
measurements, alarms, assets, etc. are stored in the platform 
repository, the elements required to support the collection and 
management of those data are extracted and stored in the 
metadata database. Additional metadata have been used for 
provisioning, monitoring, and measuring of quality of service 
and resilience of the cloud through responsive dashboards. 

The platform’s repositories or storage layer are responsible 
for the persistence of raw data collected by the ingestion 
process and data which is the result of the distributed processes 
and analysis, including the predictions. Moreover, the 
publication layer, consisting of the visualization services, 
provides the results of the predictive maintenance algorithms 
processing data collected from the field by the batch processes 
described above. 

Security manager, communication broker, data, and 
metadata stores, the components connected to the platform, as 
well the services needed to interact with them, are orchestrated 
using Docker Swarm. A scheduler addresses the orchestration 
of jobs through a unified workflow of different actions. 
Considering a platform consisting of more than one clusters 
with different hosts and services, the cluster manager facilitates 
their management while the resource manager allocates the jobs 
to available nodes, considering their hardware resources. 

3.1. RPCA: Reverse Proxy Certification Authority 

Regarding security, the proposed cloud platform 
authenticates every a) hardware device, i.e. plant-level 
equipment capable of sending data to the cloud, b) user or c) 
Docker host, which is a computer machine on which a Docker 
daemon runs, interacting with it. Moreover, their access to the 
platform resources is regulated. This is achieved through the 
security manager, named Reverse Proxy Certification 
Authority (RPCA).It is composed of two modules: CA 
(Certification Authority) and RP (Reverse Proxy). 

The RPCA component is implemented on top of OpenSSL 
libraries. In particular, the CA module provides to each of the 
aforementioned entities a Transport Layer Security (TLS) 
certificate. The RP module determines which of the incoming 
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requests can be accepted. This component, acting as main cloud 
entry point, guarantees that the requests made by uncertified 
entities to access protected resources are refused. Four types of 
certificate are generated and used to implement a two-way 
authentication: Hardware_Certificate, Browser_Certificate, 
Host_Certificate (Client role) and Service_Certificate (Server 
role). 

More specifically, when a hardware device provides its 
Hardware_Certificate to the Cloud endpoint (Reverse Proxy), 
the reached service (e.g. NiFi) answers back with its 
Service_Certificate so that the device can verify the service 
identity. Hardware_Certificates can be generated and 
downloaded through a web interface provided by the RPCA. 
Since the channel between the user's browser and RPCA web 
server has to be secured, Browser_Certificates are employed.  

An operator - in charge of configuring the gateway at the 
Edge - who wants to obtain a Hardware_Certificate, installs on 
his/her browser a Browser_Certificate generated by the Cloud 
Administrator and received via a trusted channel. 

Host_Certificates are used in the Cloud to secure the 
channels between each Docker Host and the platform’s local 
Docker Registry containing the required Docker images so they 
can be safely downloaded. 

Furthermore, the RPCA implements a multi-level 
authorization mechanism through a set of rules, cross-checking 
the identity information contained inside the certificates with 
the requested Uniform Resource Identifiers (URIs). Therefore, 
the authorization logic does not have to be implemented in each 
service connected to the platform. The RPCA logic diagram is 
presented below in Figure 2. 

 

 

Figure 2: RPCA logic diagram, where the numbers indicate 1) the cloud 
admin accessing the RPCA through a shell, 2) cloud admin generating an 
certificate and delivering to the entity operator, 3) update the deliveries 
register keeping track of the deliveries, 4) entity operator installs the 
certificate in the browser of the device, 5) Entity operator accesses the RPCA 
certificate manager web application to submit the information required to 
generate a device specific certificate, 6) the certificate is returned to the 
device as an encrypted package containing the certificate authority (CA) 
certificate, 7-8) authentication procedure on runtime 

3.2. Services 

In this work and mostly for testing purposes two services 
are integrated into the platform to test its main functionalities. 
Specifically, the first service, the predictive analytics, is 
responsible to estimate the remaining useful life (RUL) of the 
machine/robot under analysis. The derived methodology might 
support proactive strategies to make a shift in traditional 
maintenance approaches to more effective optimizing 
strategies. The service, as detailed in [22], relies on data-driven 
methodologies to transform raw data collected from the 
industrial field into feature engineering to correctly estimate 
the machine degradation over time mainly affected by the 
operational response of the machine under daily usage. The 
Predictive Analytics module implements the main processing 
layer facilitating both stream and batch data processing. Stream 
data are processed, aggregated, and analysed event by event so 
that real-time results are available. The batch service on the 
other hand deals with cleaning tasks as well as analysis through 
custom algorithms for predictive maintenance objective. The 
batch jobs are scheduled and executed evenly across the cluster 
every day. 

The visualisation service allows a strong interaction with 
the platform, through a modular and intuitive interface, 
designed to be exploited by different users, including 
maintenance engineers and operators as well as system 
administrators. Through the interface an operator can 
request/perform maintenance activities, filtered by his role and 
experience, supported, and enriched by available 3D models 
integrated in VR/AR applications, which provide step-by-step 
interactive guides. The scope of this service is to evolve the 
typical text-based maintenance manual into an interactive 3D 
maintenance visualization, to better guide the operator through 
complex procedures. 

 Platform Implementation 

The SERENA cloud platform is built on a lightweight 
micro-services architecture, that allows the core cloud services, 
its applications as well as the edge components to be managed 
as a single domain. 

The principal infrastructure technology to implement 
SERENA’s services is Docker containers. Docker provides an 
open source implementation of a process containerization 
system, which encapsulates the service, and abstracts it from 
the underlying infrastructure that hosts the containers. Unlike 
virtual machines, which are a mechanism for logically dividing 
physical machines, Docker containers are principally a 
mechanism to wrap an application, and the resources required 
to run it, into a simple executable unit. Therefore, Docker 
containers are isolated from the underlying host infrastructure, 
and can easily be distributed between the available hosts to 
improve the flexibility and agility of the system. Docker 
containers share many similar features to virtual machines, but 
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maintenance engineers and operators as well as system 
administrators. Through the interface an operator can 
request/perform maintenance activities, filtered by his role and 
experience, supported, and enriched by available 3D models 
integrated in VR/AR applications, which provide step-by-step 
interactive guides. The scope of this service is to evolve the 
typical text-based maintenance manual into an interactive 3D 
maintenance visualization, to better guide the operator through 
complex procedures. 

 Platform Implementation 

The SERENA cloud platform is built on a lightweight 
micro-services architecture, that allows the core cloud services, 
its applications as well as the edge components to be managed 
as a single domain. 

The principal infrastructure technology to implement 
SERENA’s services is Docker containers. Docker provides an 
open source implementation of a process containerization 
system, which encapsulates the service, and abstracts it from 
the underlying infrastructure that hosts the containers. Unlike 
virtual machines, which are a mechanism for logically dividing 
physical machines, Docker containers are principally a 
mechanism to wrap an application, and the resources required 
to run it, into a simple executable unit. Therefore, Docker 
containers are isolated from the underlying host infrastructure, 
and can easily be distributed between the available hosts to 
improve the flexibility and agility of the system. Docker 
containers share many similar features to virtual machines, but 
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they perform distinctly different function within the 
infrastructure system. In fact, virtual machines and containers 
can be complimentary technologies, and used in conjunction 
with each other, the containers being layered on top of the 
virtual machines. One of the goals of the SERENA project, is 
for the SERENA system to have the flexibility to run on a wide 
variety of host infrastructures, from physical servers or virtual 
machines, to on-premises clouds and CSP (Cloud Service 
Provider) hosted environments, Docker containers provide the 
mechanism to achieve this goal. 

A first implementation of the reference architecture is 
illustrated in Figure 3. 

The platform implementation adopts the Cloudera 
distribution of the Hadoop ecosystem. Regarding the 
deployment Docker swarm has been selected since it provides 
native load balancing, service continuity and ability to easily 
scale services, easing at the same time the deploying activity. 
The raw and smart sensor data repository has been 
implemented in HDFS, while for the ingestion layer Apache 
NiFi has been used. 

The main services are implemented using the following 
technologies: 

• The cloud management and orchestration services, 
based on Docker and Docker Swarm 

• The central communications broker implemented in 
NiFi 

• The data, metadata, and document repositories rely 
upon HDFS 

• The predictive analytics services, impended using 
• Apache Spark  

• Stream and batch processing using Spark libraries 
All the services communicate using an overlay network, which 
allows each service to transparently communicate with other 
services, without having to know the other services location. 

The ingest service exposes a REST API endpoint over an 
SSL connection, which uses the SERENA security service to 
mutually authenticate the entities and validate that the 
gateways are authorized to send data to the service. All the 
tasks in the service share a common service port number, and 
incoming traffic is load balanced between the available tasks in 
the server. The actual process flow is imbedded within the 
engine and wrapped as a single container image running as a 
Docker task. As the implementation and operation of the data 
process flow engines are stateless, any task in the service can 
handle incoming traffic from any gateway. 

The data flow coming from the edge gateway must be saved 
both on HDFS and on a relational database using a Mimosa 
data model subset. To this end Apache NiFi will receive 
incoming data, and thanks to dedicate flows, aimed at verifying 
the goodness and adequacy of the data received, data flow will 
be saved on the Hadoop file system in a raw format and 
simultaneously on database containing the metadata describing 
the raw data received. On top of this data, the analytics 
component will be able to start processing both data at rest and 
data in motion. 

 Case study 

The implemented platform was deployed at the premises of 
COMAU and connected to an IoT edge device named robot 

 
Figure 3: Proposed platform implementation 
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box. The robot box intention is to replicate a controlled robotic 
manipulator testbed for simulating robot failures in an easy and 
controlled approach for enabling predictive analytics.  

One of the activities involved in robot maintenance, is the 
replacement of belts which are the motion transmitters. The 
robot box (Figure 4) consists of an electric motor connected to 
a gearbox using a rubber made belt. The grey slider on the right 
is used to simulate different belt tensioning states where each 
status is made repeatable thanks to a centesimal indicator. 

 

 

Figure 4: Robot box testbed 

The platform deployment at the premises of COMAU 
involves five virtual machines with a total hardware demand of 
16 CPUs, 32 GB of RAM and 500 GB of storage disk. In order 
to guarantee container state persistence an NFS has been 
installed on a dedicated VM. It should be noted that at operating 
speed, the fully deployed SERENA system is expected to be 
more hardware demanding, this is just the first implementation. 
A screenshot of the Swarm visualization is presented in Figure 
5. 

 

 

Figure 5: Swarm visualisation of the platform deployed containers. 

As discussed in Section 3.2 to test and evaluate the proposed 
platform two services were integrated into it. As an application 
case, we considered the belt tensioning level since it is subject 
to loosening over time by leading to a reduction of robot 
precision. For this reason, high quality manufacturing 
processes might require a high number of user inspections, 
associated with a high cost of inspection and maintenance. To 
overcome this issue, we proposed to exploit machine learning 
algorithms for enabling predictive analytics. First, a predictive 
model was built to model the status of the belt in base of the 
current and the position signals provided directly by the robot. 
To this aim each cycle, in terms of current and position data 
were collected from the robot box, and modelled as feature 
engineering (e.g. mean, rms, min, max, skewness, kurtosis and 
so on), representing the input data of the machine learning 
algorithms. The built model can classify robot cycles in real-
time on the analysis of their features computed and estimate the 
remaining useful life of the robot belt.  

The visualization service integrated into SERENA provides 
a human interface towards the core functionalities of the 
deployed system in a modular and intuitive way. It can be easily 
exploited by different users, e.g., maintenance engineers and 
operators as well as system and gateway administrators, to 
effective deal with Serena functionalities. 
 

 

Figure 6: Platform user interface 

Next and through the SERENA HMI the outcomes of the 
predictive analytics service are shows to the users. As an 
example, the RUL value of the robot box, is shown to the user 
as presented in Figure 7. 
 

 

Figure 7: Robot box visualisation and RUL display through the SERENA 
dashboard 
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In conclusion, a first deployment of the platform has been 
installed at the COMAU premises by exploiting existing 
network and infrastructure. It last 2 working days 
approximately and the presence of computer experts was 
required. Nevertheless, the configuration and replacement of 
components was relatively straightforward with no additional 
complexities added. 

 Conclusion 

This study aims to present the design and implementation of 
a lightweight microservice based architecture for enabling 
predictive analytics along with other functionalities and 
facilitating the maintenance activities of the operators and 
engineers in manufacturing domains. Moreover, the use of 
virtualization solutions enables certain independency for 
specific technologies. The proposed architecture is supported 
to be scalable and resilient. 

A first setup of the platform was performed in an industrial 
environment with the first results supporting that much time is 
needed by comparison to a commercial solution but seems 
promising considering the nature of the development. 

Next steps include the further automation of the deployment 
process as well as the connection of additional services. 
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