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Abstract—In recent years, the number of industry-4.0-enabled
manufacturing sites has been continuously growing, and both
the quantity and variety of signals and data collected in plants
are increasing at an unprecedented rate. At the same time, the
demand of Big Data processing platforms and analytical tools
tailored to manufacturing environments has become more and
more prominent. Manufacturing companies are collecting huge
amounts of information during the production process through a
plethora of sensors and networks. To extract value and actionable
knowledge from such precious repositories, suitable data-driven
approaches are required. They are expected to improve the
production processes by reducing maintenance costs, reliably
predicting equipment failures, and avoiding quality degradation.
To this aim, Machine Learning techniques tailored for predictive
maintenance analysis have been adopted in PREMISES (PREdic-
tive Maintenance service for Industrial procesSES), an innovative
framework providing a scalable Big Data service able to predict
alarming conditions in slowly-degrading processes characterized
by cyclic procedures. PREMISES has been experimentally tested
and validated on a real industrial use case, resulting efficient and
effective in predicting alarms. The framework has been designed
to address the main Big Data and industrial requirements, by
being developed on a solid and scalable processing framework,
Apache Spark, and supporting the deployment on modularized
containers, specifically upon the Docker technology stack.

Keywords-Industry 4.0, Industrial Big Data, Industrial Ma-
chine Learning, Predictive Maintenance, Failure prognostics.

I. INTRODUCTION

In recent days, the technological development applied to

industrial contexts has led to a continuous growth of industry-

4.0-enabled sites. As a consequence, from smart factories to

more advanced IT industries (e.g., in the automotive scenario

[1]), the amount of data produced by industrial sensors placed

over the whole production chain is ever increasing. From

the gathered data, modern connected industries aim to get

scalable architectures able to support equipment maintenance

and control within the production processes. By means of

predictive maintenance, the costs of maintenance interventions

can be considerably reduced, and production line interruptions

can be avoided or scheduled to mitigate their impact.
In this paper we present PREMISES (PREdictive Mainte-

nance service for Industrial procesSES), a scalable predictive

maintenance service able to identify equipment critical con-

ditions in multi-cycle industrial processes before their actual

occurrences. The framework supports predictive diagnostic,

allowing industrial stakeholders to easily and smartly plan

maintenance operations and exploit the Machine Learning

methodologies as a service. PREMISES is based on an

intelligent data-driven approach to guide the prognostic of

the smart industrial sensorized components and forecast the

future evolution of the machine degradation from on-line

data collected in factories. Innovatively, PREMISES provides

predictions for slowly-degrading cyclic industrial processes

over a user-defined time horizon, by exploiting both time series

splitting and time-window aggregations.

The framework has been tested and validated on a real

industrial use case of an international white-good company.

Specifically, the production data have been gathered from

industrial foaming machines, to monitor and predict the

degradation of the equipment, and so promptly trigger the

maintenance interventions. Several sensors measure different

properties of the foaming process, cyclically applied to the

chemicals involved, and their cycle operation timings: from

an historical set of these measurement data, the aim of the

analysis is to predict alarm conditions, which would bring to

machine faults and production interruptions.

Furthermore, to comply with the common needs of man-

ufacturing enterprises, PREMISES has been designed fol-

lowing specific principles: (i) built upon supported and well-

known Big Data platforms; (ii) compatible with both on-

premises and in-the-cloud environments; (iii) easily deploy-

able, thanks to containerized software modules; (iv) virtually

unlimited horizontal scalability; (v) fault-tolerance and ability

to self-reconfigure; (vi) provisioning of self-tuning Machine

Learning techniques.

The paper is organized as follows. Section II presents

the current state-of-the-art in the industrial predictive main-

tenance context; Section III shows the main building blocks

of PREMISES’s architecture. Section IV discusses the

PREMISES’s performance over a real industrial use case. At

the end, Section V draws the conclusions of the research work

and provides future directions.

II. RELATED WORKS

With the adoption of smart environments and platforms,

industry 4.0 enables companies to reach even greater produc-

tivity and flexibility. In [2] the authors present a smart factory

139

2019 IEEE International Congress on Big Data (BigData Congress)

978-1-7281-2772-9/19/$31.00 ©2019 IEEE
DOI 10.1109/BigDataCongress.2019.00032



framework incorporating industrial networks, the cloud, and

supervisory control terminals with smart shop-floor objects

such as machines, conveyors and products, resulting in a self-

organized system leveraging the feedback and the coordination

of the central control in order to achieve high efficiency. To this

aim, the modern industrial context requires more flexible tools

and platforms to collect and analyze the huge amount of data

collected by sensorized machinery. This is both a challenge

and an opportunity to extract even more value from the

production processes. [3] addresses the trend of manufacturing

transformations in industry 4.0 environments and study the

readiness of IT tools in managing industrial Big Data and

predicting maintenance operations. In [4] the authors propose

a framework for structuring multi-source heterogeneous data,

considering spatiotemporal properties and modeling invisible

factors. This would make the production processes transpar-

ent and would allow implementing predictive maintenance

and provide remaining life predictions of key components

of machining equipment. Examples of architectures for real-

time data processing are presented in [5] and [6]. Both are

distributed architectures based on open source state-of-the-

art frameworks (i.e. Apache Kafka, Apache Spark, Cassandra)

providing reliability and scalability for IoT sensor networks.

The former also provides the integration of a visualization

tool, the latter presents a self-tuning engine for predictive

maintenance, enabling manufacturing intelligence of which

predictive maintenance is an expression. Furthermore, in [7]

the authors explore a Big Data approach based on local learn-

ing with Support Vector Regression (SVR) to perform energy

consumption predictions and compared this approach with

traditional SVR and with Deep Neural Networks exploiting an

H2O machine learning platform for Big Data. Many efforts to

reduce the need of domain experts and the reduce the costs

of running Machine Leaning algorithms have been done [8],

[9], [10], [11], [12]. Among the works to make ML solutions

exploitable as a service, [9] proposes an architecture to create a

flexible and scalable Machine Learning service, developing an

open source solution and validating it on a forecast analysis of

electricity demand using real-world sensors and weather data.

[10] provides an empirical comparison of MLaaS platforms,

where the authors evaluate the effectiveness of fully-automated

systems, turnkey systems and fully-customizable systems. To

overcome the complexity of Big Data pipelines, in [13] the

authors propose a new methodology based on Model Driven

Engineering (MDE). Their work aims to lower the amount of

skills required in the management of a Big Data pipeline and

to support automation of Big Data analytics.

The proposed architecture, PREMISES, improves the state-

of-the-art by introducing a new general approach in forecasting

critical events generated by multi-cycles industrial processes

and occurring in large time horizons with respect to the pro-

duction cycle. It exploits a time-based aggregation approach

and self-tuning strategies, still providing scalability, reliability

and flexibility as required in modern industrial scenarios. The

proposed solution has been validated on a real industrial use

case concerning the prediction of the degradation of industrial

Fig. 1: PREMISES’s architecture consisting of five building

blocks.

foaming machines.

III. THE PREMISES’S ARCHITECTURE

The architecture of PREMISES is presented in Figure 1.

The analytics flow consists of five main building blocks, each

executing a specific analytic step: Preprocessing, Smart Data,

Data Aggregation, Predictive Analytics, and Validation. In the

following, the five building blocks are described.

Preprocessing. This component performs the common steps

required to clean the data collection under analysis, such as

detecting and removing outliers (i.e., extreme values). Specif-

ically, deciles of cycle lengths are exploited to remove cycles

belonging to the first and the last deciles. Such approach was

confirmed to be useful directly by domain experts, who knew

that some cycles were not actual production measurements but

test cycles, for instance, and indeed they were successfully

discarded. Additionally, to address the cyclic nature of the in-

dustrial processes under exam, an alignment task is performed

to make the data fit a fixed-time structure by means of padding

(the last value of the cycle is repeated until the cycle time slot

is filled).

Smart Data. This phase transforms the raw time series

coming from sensors into a time-independent feature set able

to characterize the corresponding portion of the original time

series. Namely, the original time series is split into contiguous

portions, with the split size being a parameter of PREMISES.

Then, for each portion, statistical features able to summarize

the time series trend are computed, such as mean, standard

deviation, quartiles, Kurtosis, Skewness, sum of absolute val-

ues, number of elements over the mean, etc. It is worth noting

that having same-size portions is a choice of simplicity that

was proven to work in our use case, however the proposed

approach can be successfully applied to splits of different

sizes, since their purpose is to capture specific transient states

and steady states in cyclic industrial processes, whose duration

can vary.

Finally, a feature selection phase is performed over the full

set of the many statistical features, to identify those which are

more informative and discard the useless ones. To this aim, two

techniques are exploited in PREMISES: (i) multicollinearity-

based and (ii) correlation-based, both requiring a threshold to

be defined as a parameter of PREMISES. The former removes

attributes whose values can be trivially predicted by a multiple

regression model of the other attributes. The latter computes
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Fig. 2: Splitting of each cycle of the original time series,

Smart Data computation of each split portion, and multi-cycle

aggregation schema.

the correlation of each couple of attributes and removes those

that are correlated the most, on average over all the (other)

attributes.

Data aggregation. For many slowly-degrading cyclic in-

dustrial processes, such as ours, the single cycle is too short

with respect to the target degradation phenomena and its

prediction horizon. Often, in cyclic industrial processes, there

is no interest in predicting the alarming-condition of a specific

cycle, but that of a longer period, such as hours or days,

which span over many cycles. Hence, this step aggregates

the Smart Data cycle-related features over longer, multi-cycle,

time windows. The aggregation is performed separately for

each split. PREMISES captures the degradation of each Smart

Data feature by computing a linear regression on the aggre-

gated multi-cycle period, and records the slope and intercept

coefficients. Furthermore, for each attribute, the min, max,

mean and standard deviation of the values within the multi-

cycle time window are recorded. A visual clue of the data

processing executed from the raw cyclic time series to the

data aggregation is presented in Figure 2. It is worth noting

that both the feature selection and the feature aggregation

preserve the meaning of the measurements in terms of human

readability, hence keeping the approach transparent and its

decisions easily accountable.

Predictive analytics. This building block consists of two

steps: model building and real-time prediction. The real-time
prediction step simply exploits a pre-built model to assign

a label to new incoming data. The model building instead

is a crucial step that performs the training on the historical

data and extracts the latent relations among the data and the

prediction labels (alarming conditions registered in the past).

PREMISES exploits two ensemble learning classification

algorithms: Gradient Boosted Tree Classifier [14] and Random

Forest [15], as provided by the Spark MLlib library [16],

automatically selecting the best performing one according to

a score metric (defaulting to F-Score).

The validation is performed using the Stratified K-Fold
Cross Validation technique. It equally divides the dataset

into K folds (keeping the proportions of the original label

distribution in each fold, hence the name stratified) and, for

K times, alternatively uses a fold as test set and the other

K − 1 as training set. PREMISES evaluates the model by

computing the precision, the recall and the F-Score for the

class of interest (i.e. the alarming conditions or failures).

In conclusion, PREMISES provides a scalable Machine

Learning-based predictive-maintenance service. It addresses

slowly-degrading multi-cycle industrial processes to predict

alarming conditions or failures by creating a data-driven

model on historical data. Different strategies are exploited to

describe cyclic time series data, aggregate them over multi-

cycle horizons and self-tune the predictive model to offload

data scientists and domain experts from manual interventions.

While the multi-cycle aggregation time window and the split

size within a cycle are parameters that can be set by do-

main experts, since they describe or capture features of the

industrial process, the algorithmic parameters are self-tuned

by PREMISES itself, thanks to a grid optimization search

over the classification algorithm parameters and the feature

selection thresholds (correlation and multicollinearity).

Finally, the whole architecture is designed and developed to

provide a scalable service to address Big Data and Industry

4.0 requirements, able to manage rapidly increasing volumes

of data. To this extent, the framework has been developed by

exploiting the Apache Spark framework and MLlib library,

containerized using Docker technology.

IV. EXPERIMENTAL RESULTS

The general-purpose PREMISES framework has been cus-

tomized for a real industrial use case and validated on real data

collected in a manufacturing plant of an international white-

goods company.

The experimental results are obtained on an Intel Core i7

machine with 32 GB of main memory running Ubuntu 16.04

with Spark (and MLlib) 2.2.0 and Docker 17.09.

Real industrial data. The dataset was collected from sen-

sors placed in a factory floor: a nozzle injecting a combination

of two reacting chemicals has been sensorized to monitor the

overall process. During each production cycle, the nozzle is

used to inject an isolating foam. Different types of signals

have been collected: temperature of the chemicals involved,

pressure of the liquids before the injection, injection timing

and quantity, ratio of the injected chemicals, etc. A set of

different alarms, each describing a specific issue, has been

collected and associated with the original production cycle

that presented such issue. The final goal of the use case is

to predict if a given set of monitored production cycles (e.g.,

hourly) will trigger an alarm condition in a given time horizon

(e.g., the next few hours).
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TABLE I: Cycles length distribution.

Deciles min 10% 20% 30% 40% 50% 60% 70% 80% 90% max
Values 67 122 164 165 166 166 167 168 169 171 568

Fig. 3: Number of cycles per day

TABLE II: Alarms description.

Description Count
Emergency 18
Chem1 tank: temperature out of range 1 250
Chem1 tank: temperature out of range 2 34
Chem1 tank: safety thermostat 30
Chem1 tank: minimum level 2
Chem2 tank: temperature out of range 1 154
Chem2 tank: temperature out of range 2 29
Chem2 tank: safety thermostat 30
Chem2 tank: minimum level 4
Chem2 loading stream distributor: not open 2
Fire safe: not open 48
Fire safe: not closed 20
High-pressure frame/piping: monitoring trouble 7
Chem1 high-pressure pump: motor fault 2
Chem1 recycle stream distributor 1: not closed 4
Chem1 pressure: maximum 1
Chem2 recycle stream distributor 1: not closed 30
Chem2 pressure: maximum 1
Ratio: out of range 1 4
Pouring weight: out of range 1 120
Pouring weight: out of range 2 72
Heads hydraulic unit: pressurization time long 2
Heads hydraulic unit: oil filter clogged 16
Head 1: air suction fault 2
Head 1: pouring piston not closed 2
Head 1: self-cleaning piston not open 68
Head 1: no enable to pour signal 10
Chem1 temperature head 1: out of range 1 6
Chem2 temperature head 1: out of range 1 8
Head 1 maintenance: maximum number of
high-pressure hose cycles

1

The dataset collects measurements in the period ranging

from April 2018 to January 2019. Data contains a total

of 66,000 production cycles of the same industrial process,

unevenly distributed over 183 actual days, due to holidays

and work interruptions, as shown in Figure 3. It is worth

noting that the non-contiguous data collection does not affect

the experimental results: when no data were present, the

equipment was not working, hence domain experts assumed

that no degradation was happening.

Fig. 4: Data labeling applied with 1-day aggregation window,

red lines are alerts.

A. Data exploration and preprocessing

Table I reports the deciles of the cycle lengths in number of

samples (sampling has a constant timing). The cycle lengths

are reduced from 171 to 164 samples by removing the first

and last deciles. Then, all cycles are padded to be as long as

the longest ones.

Data labeling. Alerts have been divided into categories

depending on their causes, as reported in Table II, along with

their description and their count. Each alert is associated with

the aggregation time window it belongs to, whose length can

be 4-8-24 hours (as shown in Figure 4).

B. Smart Data computation and aggregation

Each cycle of the industrial process under exam consists

of 8 changes of state, hence we set 8 splits as PREMISES

parameter. Experimental results are reported for 5 and 10 as

Variance Inflation Factor (VIF) in the multicollinearity test

and using the values 0.3 and 0.5 as thresholds for the Pearson

correlation test [17]. Generally, the former strategy selects

fewer attributes with respect to the latter. Tables III reports the

experimental results along with their configuration. Column

Time W describes the aggregation time window values (4

hours, 8 hours and 1 day), Alg refers to the algorithm used

to perform the classification (Gradient Boosted classifier or

Random Forest), FS describes the feature selection strategy

adopted in the experiment, and Thres refers to the threshold

value used for the feature selection strategy.

C. Predictive analytics results

To build the model we used two different algorithms (Gra-

dient Boosted Tree Classifier and Random Forest), while for

the testing phase we chose the Stratified K-Fold validation

technique, configured with 3 splits (K = 3). For each

configuration of the analytics flow, a set of evaluation indexes

have been computed; specifically, we considered the precision,

the recall and the F-Score (columns Prec, Rec and F-Score in

Tables III) for the failure class, representing the occurrence of

an alarm in the time window. The scores in Table III measure

the ability of the different algorithms to predict the occurrence
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TABLE III: Experimental results, Stratified K-Fold approach.

Time W Alg FS Thres Prec Rec F-Score

1d

GB

all 0.817 0.763 0.776

corr
0.3 0.627 0.662 0.624
0.5 0.790 0.752 0.756

m coll
5 0.623 0.562 0.576

10 0.683 0.685 0.665

RF

all 0.843 0.818 0.812

corr 0.3 0.665 0.629 0.627
0.5 0.842 0.830 0.822

m coll
5 0.676 0.606 0.614

10 0.667 0.607 0.619

8H

GB

all 0.449 0.314 0.334

corr
0.3 0.318 0.229 0.247
0.5 0.521 0.314 0.339

m coll
5 0.378 0.238 0.266

10 0.315 0.210 0.237

RF

all 0.563 0.352 0.394

corr
0.3 0.272 0.133 0.178
0.5 0.530 0.295 0.333

m coll
5 0.332 0.152 0.208

10 0.242 0.114 0.155

4H

GB

all 0.466 0.301 0.344

corr
0.3 0.243 0.146 0.173
0.5 0.554 0.319 0.380

m coll
5 0.299 0.163 0.203

10 0.219 0.137 0.163

RF

all 0.617 0.345 0.424

corr
0.3 0.310 0.112 0.162
0.5 0.625 0.327 0.399

m coll
5 0.260 0.120 0.164

10 0.306 0.069 0.111

of an alarm in a given time horizon: for each time window,

the best performing configuration is highlighted in bold. From

the evaluation of the performed experiments, it is possible

to assess that the multicollinearity feature selection strategy

is too restrictive, being all and the correlation strategies

selected several times as best configurations. For the given

configurations, the results show that the best time window

length is the daily one.

V. CONCLUSIONS AND FUTURE WORKS

This paper presents PREMISES, a scalable analytic frame-

work providing a prognostic service for predictive mainte-

nance. The framework, customizable for different multi-cycle

industrial processes, has been tested on a real use case,

resulting efficient and effective in predicting alarm conditions

within a certain user-defined time-horizon. PREMISES has

been designed and developed to scale and support Big Data

analysis.

Future directions of the research work include: (i) intro-

ducing the frequency-domain analysis, to be able to capture

different aspects of the signals received from the sensorized

factory floors, (ii) make the predictive model evolutive, intro-

ducing quality metrics to be able to self-assess the goodness of

the results and trigger a new model-building phase to update

the system, and (iii) consider and integrate in the model the

ordinary maintenance operations scheduled on the machines.
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