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Abstract—Evaluating the degradation of predictive models
over time has always been a difficult task, also considering that
new unseen data might not fit the training distribution. This is
a well-known problem in real-world use cases, where collecting
the historical training set for all possible prediction labels may
be very hard, too expensive or completely unfeasible. To solve
this issue, we present a new unsupervised approach to detect
and evaluate the degradation of classification and prediction
models, based on a scalable variant of the Silhouette index, named
Descriptor Silhouette, specifically designed to advance current
Big Data state-of-the-art solutions. The newly proposed strategy
has been tested and validated over both synthetic and real-
world industrial use cases. To this aim, it has been included in a
framework named SCALE and resulted to be efficient and more
effective in assessing the degradation of prediction performance
than current state-of-the-art best solutions.
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I. INTRODUCTION

With the advent of the fourth industrial revolution (i.e.

industry 4.0), new challenges and opportunities have been

faced by Big Data and machine learning researchers. The

adoption of sensors in the industry leads the companies to

a completely new approach in production processes. The

benefits brought by data analytics are not just relative to the

production but, thanks to the huge amount of data collected

by sensorized machineries, also the company decision making

process is supported, bringing to more accurate and valuable

results. In many real industrial contexts and applications (e.g.,

automotive [1]), the maintenance process of factory floors

exploits complex and effective strategies (i.e. predictive main-

tenance) based on supervised algorithms. As widely known,

supervised learning (i.e. classification) requires the historical

dataset along with the labels about the events to be predicted.

However, the performance of the classification task is often

hard to evaluate over time: traditional supervised indexes (e.g.,

accuracy) require the actual class values (labels) not only for

the historical data, but also for the new data, which is typically

a requirement that can not be satisfied.

Prediction model performance usually degrades over time

because (i) new incoming data widely differ from the data

distribution on which the model was trained or (ii) because not

all possible classes (labels) were effectively known at training

time. To overcome this issue, new quality indexes for self-

assessment are required.

This paper presents SCALE (Self-evaluating process Con-

trol AnaLytcs Engine), a scalable engine for automatic in-

dustrial equipment maintenance, where a new self-assessment

strategy automatically detects when the appropriateness of

a prediction model degrades too much for the data under

analysis. The self-assessment strategy takes advantage of

a newly proposed unsupervised and scalable index called

Descriptor Silhouette (DS), able to describe the intra-class

cohesion and inter-class separation, other than introducing a

new degradation metric able to characterize the performances

of the classification model over time when new unseen data

are processed by the system.

The experimental results show that the proposed solution is

able to assess the model degradation over time. Additionally,

DS outperforms the current state-of-the-art strategies evaluat-

ing inter-class cohesion and inter-class separation of labeled

dataset in distributed environments, thus being an innovative

result in the Big Data analysis context.

The paper is organized as follows. Section II presents

the current state-of-the-art for the research topic; Section III

describes the methodology of the implemented engine and

presents the newly proposed self-assessment strategy. Section

IV shows, for a real industrial use case, the experimental

results obtained by means of the presented solution and, at the

end, Section V draws the conclusion of the research, focusing

as well on the future direction of the work.

II. RELATED WORKS

With the sensorization of factory floors, more and more

machineries and production equipment are continuously col-

lecting industrial data: as a consequence, an ever-increasing

number of companies is able to collect a huge amount of

information about the production processes.

The collection, the processing and the analysis of huge

volumes of real-time sensor data still represents a challenge in

the modern industrial context. As discussed in [2], Big Data

analytics is able to face the necessity of knowledge extraction

helping managers to make more-informed business decisions

and to improve the production processes. Many solutions [3],

[4] exploit Big Data frameworks to face the requirements
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Fig. 1: SCALE’s methodology.

imposed by this modern productive scenario. Specifically, in

[5], the authors propose a scalable architecture exploiting open

source technologies (i.e. Apache Kafka and Spark) for online

and offline processing along with a visualization layer. The

authors in [6] present instead a Big Data analytics framework

to provide a health monitoring services with application on

an aerospace and aviation industrial. Moreover, in [3], an

integrated Self-Tuning Engine for Predictive maintenance in

Industry 4.0 is presented, taking advantage of Big Data tech-

nologies (i.e. Kafka, Spark, Cassandra) and running on top

of a Docker contenerized environment. A further solution for

predictive maintenance in a Big Data environment, tailored to

wind turbines monitoring, has been proposed in [4] proposing

a data-driven solution deployed in the cloud for predictive

model generation.

The majority of the cited works does not take into account

the performance degradation that the arrival of a new unknown

data distributions can cause over a prediction process. To

evaluate the geometrical distribution of points divided in

classes (or clusters, depending on the applications) a wide

number of indexes have been proposed in literature [7]. Most

of them, however, are affected by a low scalability and a high

computational complexity. The implementation of good and

scalable evaluation metrics is still a challenge in Big Data

scenarios. A scalable, approximate and aggregated Silhouette

index has been recently added to the Spark MLLib library

[8], named Squared Euclidean Silhouette1 (SE-Sil). Moreover,

since SE-Sil does not allow to have a score for each point in

the dataset it cannot be exploited to capture model degradation.

Here we introduce a new scalable unsupervised index,

named DS, to model the geometrical distribution of points

in a Big Data context without requiring a-priori knowledge

on data. DS has been proposed to detect when a model does

not fit anymore the new input. To the best of our knowledge,

no similar studies deal with an unsupervised analysis of

classification model degradation. Furthermore, the Silhouette

approximation provided by DS is better than the one reached

by SE-Sil (see Section IV for further details).

III. METHODOLOGY

SCALE is a new general-purpose engine suited to fulfil the

needs of modern companies in the context of industry 4.0. In

a modern machine learning pipeline, a Self-assessment step

is necessary to identify possible degradation of the prediction
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task due to changes in the production environment and decide

whether it is necessary to update and retrain the predictive

model with new data.

The self-assessment methodology proposed in this research,

is reported in Figure 1. Given a trained predictive model, since

its knowledge is based on the information contained in the

train samples (historical sensor data with label), it is difficult

to assure that its performances will remain the same over

time. The direct consequence of this issue is that the real time
predictions performed on new unseen data can be misleading

or, worse, completely erroneous if the new data shows a

previously unknown distribution. Since validation techniques

require labeled data to be applied and in real use case data

are usually unlabeled (the label assignment is generally a

very onerous task), the common validation strategies are

not applicable. To overcome this issue, the self-assessment

algorithm exploits an unsupervised quality metric to carry out

the task of evaluating the predictive model degradation.

The algorithm main idea is that, given a dataset of points

divided in classes, the measure of the intra-class cohesion and

the evaluation of the inter-class separation, before and after the

prediction of unseen data, is able to detect the degradation of

a predictive model. The engine can be automatically triggered

when the number of incoming samples of data reach a given

percentage w.r.t. the number of records in the historical dataset

(e.g., 10%).

Descriptor Silhouette index. The Silhouette [9] is a well-

known index with the purpose of evaluating the quality of

clusters of points in terms of cohesion and separation. How-

ever, the computational cost of this index is O(N2), where

N is the cardinality of the dataset (a critical dimension in a

Big Data context): to calculate the Silhouette index all the

pairwise distances between the points of the dataset have to

be computed. Thus, the Silhouette coefficient is not suited to

be applied in a Big Data application.

To solve this problem, we propose a new approach, named

DS (Descriptor Silhouette), that is tunable to have a com-

putational cost linear in the number of records and with an

error with respect to the standard Silhouette score definitely

acceptable.

The DS is based on the idea that the geometrical shape of a

group of points can be described with a low number of descrip-

tors, well distributed in the space. For each classification label,

a certain number of descriptors can be calculated exploiting

the centroids extracted through the well-known K-Means al-

gorithm [10] (in Apache Spark MLLib [8]) to well describe its

shape. The number of distances to compute can be drastically

reduced, calculating just the distances between each point of

the dataset and the descriptors. The computational complexity

of the algorithm is now O(N ∗ C ∗ D), where N is the

cardinality of the dataset, C is the number of classes learned

by the classifier, and D is the number descriptors computed

for each class. The number of classes is usually very small

w.r.t. the number of points and, commonly, it remains constant

unless a model is retrained with new set of classes. The number

of descriptors is usually several order of magnitude lower
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than the number of records in data collection under analysis.

Indeed, K-Means and generally clustering algorithms are able

to describe the dataset with a limited number of centroids,

that well represent the whole geometrical points distribution.

The DS approach implements the Euclidean distance and it

exploits the same Silhouette definition to calculate the score

for each point in the dataset.

As the Silhouette coefficient, the proposed DS index as-

sumes values in [−1, 1]. The DS is computed for each record

in a dataset, and it gives the information about the quality

of the assignment of that record to a specific classification

class. Values lower than zero represent a bad assignment of

the record to a group, while values higher than zero mean a

good assignment. In the specific case of model assessment,

the classes of the classifier can be considered as clusters to

which the new incoming unlabeled data is assigned. Thus,

each classification class is described by a Silhouette curve,

like the one reported in Figure 2 obtained ordering the DS

values of each point in each class.

Model degradation. The base DS curve, obtained at the end

of the model training, describes the intra-class cohesion and

inter-class separation for the training dataset. Then, when new

data come to the classifier it is labeled with one of the known

classes. After a set of new data has been labelled, the Self-
assessment block will recompute the DS including the new

labelled points: an upwards shift of the DS curve represents

an improvement in terms of intra-class cohesion and inter-class

separation while, on other hand, a downwards shift denotes a

degradation.

The degradation of the DS index highlights the presence of

new unseen points (i.e., not present during the training of the

model). This scenario can be translated into a degradation of

the classification model itself: the model, indeed, is not able to

recognize the new data distribution since this was not available

at the time of its creation. Given a prediction model trained

on a set of classes C, the degradation of a class c ∈ C at time

t is described by the following relation:

DEG(c, t) = α ∗MAAPE(Silt0 , Silt) ∗
Nc

N
(1)

α =

{
1 if : Silt0 ≥ Silt
−1 if : Silt0 < Silt

(2)

The coefficient α defines if the degradation is positive (mean-

ing a possible reduction of performances of the classification

model) or negative when the new incoming data has a distri-

bution similar to the data used to train the model increasing

the cohesion of the class under analysis, and MAAPE (Mean
Arctangent Absolute Percentage Error) [11] quantifies the

curve shift. From (1), the degradation is modelled as the

MAAPE error between the initial DS curve (obtained at the

model creation time) and the one obtained at a certain time

t, after that the model receives new data. The degradation is

balanced between the classes by the ratio Nc/N , where Nc is

the number of new records assigned to class c and N is the

total number of new incoming data. The degradation of the

whole model can be computed as the sum of the degradation

TABLE I: Washers dataset.

NumWashers # of cycles Dataset %
0 2,392 10.03%
1 5,367 22.52%
2 6,212 26.06%
3 8,707 36.53%
4 1,155 4.85%

Total cycles 23,833 100%

for each class.

IV. EXPERIMENTAL RESULTS

To validate the effectiveness of the proposed methodology,

all the experiments have been performed exploiting the well-

known Big Data analytic framework Apache Spark [12], along

with the scalable machine learning library MLLib [8]. Other

useful algorithms to support the analytic process come from

the scikit-learn machine learning library [13].

In the default configuration, the number of descriptors

computed for each class and used to compute the DS is set to

4% of the cardinality of the dataset.

Experimental context. The real industrial use case on

which the approach has been tested on consists in predicting

the correct tensioning level of the belt installed in a robot

axis based on the electricity consumed by the motor. In this

use case, some washers have been used to discretize the belt

tensioning levels: the higher is the number of washers, the

lower the tension of the belt. The number of needed wash-

ers represents the label assigned to each cycle of measured

electricity: the requirement is to predict, for each incoming

electricity cycle, the right tension for the belt in terms of

number of washers. Table I shows the number of cycles in

the dataset under analysis, divided by class: the cycles are

characterized by 5 unbalanced classes for a total of more than

20,000 samples. The best tensioning of the belt is necessary to

assure the correct functioning and precision of the robot: low

tension causes slippage and premature wear of the belt and the

pulley, while too much tensions lead to excessive strain on

belts, bearings and shafts which translates into overheating.

Accordingly to domain experts, belt tensioned with 1 or

3 washers (classes 1 and 3) represent a robot functioning

correctly.

Predictive model. From the experimental context for the

use case under analysis, the framework presented in [3] turns

out to be effective in predicting the class relative to the

belt tensioning values given the electricity consumption. The

framework [3] automatically selects the Random Forest, that

outperforms all the other classifiers. Especially for classes 1

and 3, identified by the domain experts as the most acceptable

tensioning values, the f-measure validates with a high confi-

dence the computed models reaching an average value over a

3-fold cross-validation of over 0.9. This is the model that is

used to validate the effectiveness of our approach.

Self-assessment. The real data of the industrial use case

have been used to evaluate the effectiveness in measuring the

degradation of the model described above.
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We present two experiments based on two different models:

model i) a model trained on half of the class 1 and the whole

class 3, and model ii) a model trained on all the elements of

class 1 and 3. To simulate the evaluation of the classification

model over time, we used five different test sets with the

following characteristics: test i) a dataset composed by half

of the items belonging to class 1 (not overlapped with the half

used in the training of model i and the whole class 0 with this

order, test ii) a set of points corresponding to the whole class

0, test iii) a dataset composed by the points of class 2, test iv)

all the points of class 4, and test v) the points belonging to

classes 0, 2 and 4, ordered by class. All the test sets have

been split in 10 sub-sets to simulate the evaluation at different

time periods. The testing is performed with increasing sub-

sets (extracted in order), containing from the 10% up to the

100% of the original cardinality, with a 10% step. From now

on, the DS curve computed at the training time is indicated

as t0, while the curves computed for each split of the test sets

are indicated as ti (with i ranging from 1 to 10).

As reported in Table III, the first model, model i, has been

tested with the configuration test i, while the model model ii
has been tested with the configurations test ii, test iii, test iv
and test v.

The experiment test i (Figure 3a) demonstrates that the

classification of data with a known distribution (points labeled

with class 1) does not affect significantly the degradation of the

model, while as soon as new data with an unknown distribution

comes, the degradation of the classification model starts to

drastically increase. In this case, all the new incoming data

(firstly belonging to class 1 and then to class 0) has been

classified as class 1. Figure 3a shows this behavior over time:

from time t1 to t5, only sensor data with real label 1 is

evaluated by the trained model and the degradation remains

limited between 1.87% and 9.72%. On the other hand, as soon

as data from class 0 arrives, from time t6 to t10, the input

is erroneously labeled by the model as belonging to class 1.

Thus, the degradation score proposed in this paper is able to

capture this degradation step between time t5 and t6, reaching

29.65% at time t10.

The experiment test v (Figures 2 and 3b) demonstrates that

the proposed method is able to detect the degradation over

time for multiple unseen classes. Table II reports how the

new incoming data has been classified in this experiment

configuration. From Figure 2 it is possible to see how the DS

points out a degradation for both the classes (the new unseen

data are assigned both to class 1 and to class 3). In Figure 3b it

is possible to notice that from time t1 to t2 only data labeled as

0 comes, causing a degradation of the class 1 (degradation for

class 3 is null). From time t3 to time t10, instead, as new data

with real label 2 and 4 comes, this is classified as belonging to

class 3, thus lowering the DS value for this class. In the same

time instants, the trend of degradation for class 1 is decreasing

because (1) balances the degradation w.r.t. the number of new

input data accordingly to each class.

Table III shows the combinations of models and test sets

along with the degradation results at time t10, separately for

Fig. 2: DS curves for test v before (Base) and after (Degraded)

degradation at time t10.10

(a) Degradation of class 1, (unseen classes 1 and
0)

(b) Degradation of classes 1 and 3, (unseen
classes 0, 2, 4)

Fig. 3: Model degradation for test i (left) and test v (right) at

different timings.

class 1, class 3, and the total degradation. From the results,

test ii mostly affects class 1 while test iii influences class

3. test iv, on the contrary, well suits the distribution of the

training set (especially for class 3), probably because it is the

less represented distribution in the original dataset (only 4%

w.r.t. the total number of cycles).

Descriptor Silhouette performance. To prove the com-

putation performance of the proposed approach, a synthetic

dataset of 1,000,000 records with 10 features and an isotropic

Gaussian distribution over 3 classes has been created exploit-

ing the scikit-learn Machine learning library [13]. This dataset

has been used as baseline to proof the tunable linearity of

the proposed index. From this dataset, 6 sub-datasets with the

same characteristics of the original one have been generated,

TABLE II: Distribution of test data (classes 0, 2 and 4) in

classes 1 and 3, test v configuration.

True class
Class 0 Class 2 Class 4

Assigned
Class

Class 1 2,391 4 2
Class 3 1 6,208 1,153
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TABLE III: Degradation results at time t10 for classes 1, 3

and total degradation.

Model Test set Degr 1 Degr 3 Tot Degr
model i test i 29.65 0.00 29.65

model ii

test ii 12.48 0.03 12.52
test iii -0.01 96.02 96.02
test iv 0.00 -13.56 -13.56
test v 4.21 75.90 80.11

TABLE IV: Descriptor Silhouette (DS) performance compari-

son with Standard Silhouette (SK-Sil, implemented by scikit-
learn). DS is configured with 200 descriptors.

# records DSt [s] DSavg SK-Silt [s] SK-Silavg Err %

1,000 7.67 0.744 0.40 0.744 0.201

10,000 44.10 0.758 3.53 0.743 2.025

50,000 167 0.766 24.70 0.742 3.192

100,000 406 0.768 126 0.742 3.414

500,000 2021 0.769 2806 0.742 3.559

1,000,000 3968 0.769 11234 0.742 3.579

and for each of them we computed both the DS index and the

scikit-learn Silhouette index. Table IV shows, for each sub-

dataset, the time necessary to calculate the DS index (DSt) and

the time to obtain the standard Silhouette (SK-Silt) showing

that our index is linearly proportional to the number of points

in the dataset when the number of descriptors is kept constant

while standard Silhouette is growing quadratically.

The average value of our DS index approximates very well

the one obtained with the standard one: with 1 million points

DS index is higher of just 0.027 w.r.t. the standard, meaning a

good precision in evaluating the intra-class cohesion and inter-

class separation. Instead, comparing the SE-Sil score (provided

by the MLLib library [8]) with the average of the DS scores

and the average values calculated with the standard Silhouette

computed for the whole dataset we notice that the first index

gives very different results w.r.t. our solution and the standard

approach: even if the required time to compute the SE-Sil in

the worst case is 3.15 seconds, the average score obtained with

it is always higher than the standard Silhouette score of almost

0.2 and it can lead to misleading analysis.

Moreover in Table IV column Err % the percentage error

between the silhouette curves obtained with our DS and the

SK-Sil is reported, showing a very low error even between

the silhouette value per document. Thus, the DS index is well

suited to be used in a Big Data context and to assess the

model degradation over time. Moreover, the implementation

of the DS index exploits the Spark MapReduce API, ensuring

the scalability in a distributed environment.

V. CONCLUSIONS AND FUTURE WORKS

This paper presented a new strategy to assess predictive

model performances over time. It exploits an innovative and

scalable index, named Descriptor Silhouette, able to identify

if the new incoming data does not fit anymore the distribution

on which the models were trained, so triggering a model

retraining. Experiments on a real and a synthetic datasets

demonstrate that DS well performs in detecting degradation of

the model performances, being thus an efficient and effective

approach to trigger model updates.

Future directions of this research work certainly include: (i)

automatic analysis of the input data that causes a great model

degradation, in order to automatically detects new labels for

these data and trigger a retraining, (ii) test the newly proposed

approach over other different scenarios and data collections,

to furthermore prove the generality of the methodology.
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