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Abstract—The recent expansion of IoT-enabled (Internet of
Things) devices in manufacturing contexts and their subsequent
data-driven exploitation paved the way to the advent of the Indus-
try 4.0, promoting a full integration of IT services, smart devices,
and control systems with physical objects, their electronics and
sensors. The real-time transmission and analysis of collected
data from factories has the potential to create manufacturing
intelligence, of which predictive maintenance is an expression.
Hence the need to design new approaches able to manage not
only the data volume, but also the variety and velocity, extracting
actual value from the humongous amounts of collected data.

To this aim, we present iSTEP, an integrated Self-Tuning
Engine for Predictive maintenance, based on Big Data technolo-
gies and designed for Industry 4.0 applications. The proposed
approach targets some of the most common needs of manu-
facturing enterprises: compatibility with both the on-premises
and the in-the-cloud environments, exploitation of reliable and
largely supported Big Data platforms, easy deployment through
containerized software modules, virtually unlimited horizontal
scalability, fault-tolerant self-reconfiguration, flexible yet friendly
streaming-KPI computations, and above all, the integrated provi-
sioning of self-tuning machine learning techniques for predictive
maintenance.

The current implementation of iSTEP exploits a distributed
architecture based on Apache Kafka, Spark Streaming, MLlib,
and Cassandra; iSTEP provides (i) a specific feature engineering
block aimed at automatically extracting metrics from the pro-
duction monitoring time series, which improves the predictive
performance by 77% on average, and (ii) a self-tuning approach
that dynamically selects the best prediction algorithm, which
improves the predictive performance up to 60%. The iSTEP
engine provides transparent predictive models, able to provide
end users with insights into the knowledge learned, and it has
been experimentally evaluated on a public unbalanced failure
dataset, whose extensive results are discussed in the paper.

Index Terms—Predictive maintenance, machine learning.

I. INTRODUCTION

Due to the large amounts of data produced by modern

and always connected industries, the necessity of powerful

and reliable architectures is becoming prominent. From the

smart factory, filled with sensors over the whole production

chain, to the more advanced IT industry with huge amounts of

log data, it is of paramount importance the ability to collect,

manage and elaborate all these data in real time, extracting

useful knowledge for production process improvements and

competitive business advantages.

The paper presents iSTEP, an integrated Self-Tuning Engine

for Predictive maintenance targeting Industry 4.0 contexts. The

contributions of the proposed approach consist in the integra-

tion of the monitoring and prediction tasks, the introduction of

a feature engineering block yielding a large improvement in

prediction performance, the addition of a self-tuning approach

for the dynamic selection of the best predictive algorithm, and

specific attention devoted to the transparency of the predictive

models, hence providing interpretable knowledge to end users

and competitive business advantage to manufacturing compa-

nies.

The paper is organized as follows. Section II presents related

work, Section III describes the iSTEP building blocks, Section

IV provides the current technological implementation, Section

V discusses the experimental results, and Section VI draws

conclusions.

II. RELATED WORK

A key aspect addressed by the state of the art is the man-

agement of business processes and risks. In [1] an approach

for a holistic data-driven assessment of risks based on time

series is proposed. A case study exploiting Big Data analytics

to improve production processes is described in [2]. It is based

on the methodology named Cross-Industry Standard Process

for Data Mining. It is used to present and organize results for

better understanding businesses. Manufacturing computeriza-

tion is another crucial facet of the Industry 4.0 ecosystem. In

[3] a semantic reduction of heterogeneous sources is presented,

based on Semantic Web approaches leading to a data integra-

tion fostering better analytics implementations. Furthermore,

a prediction and detection algorithm based on data analysis

for huge amount of low quality data is presented in [4] and

applied to traffic congestion prediction and detection in urban

area. Additionally, not only the heterogeneity and the quality

of data collected in the context of industry 4.0 is a challenge,

but also the increasing amount of data to be managed by

machine learning techniques; in this context, a comparison

between multi-class classifiers and deep learning techniques

is presented in [5], and a comparative analysis of exploratory

techniques for Big Data is provided in [6]. In [7], authors

present a Big-Data scalable predictive approach in the energy
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domain, a context of crucial importance in the industry 4.0 as

well. An energy signature is devised and exploited by means

of machine learning techniques to forecast future power con-

sumption. Moreover, in [8] the authors propose a framework

for on-demand remote sensing data analysis to accelerate the

execution of the models by reducing data transfers through

the network allowing classical remote data service systems

to evolve into remote sensing data processing infrastructures.

Advanced sensors and ICT technologies provide the ability to

link physical manufacturing facilities and machines to Internet

applications; in [9] a review of virtualized and cloud-based

services is provided in the context of manufacturing systems.

The paper presents a predictive maintenance approach in-

volving cyber-physical systems with wide Internet of Things

capabilities, and complex event processing features.

Among the most widespread policies, Condition-based

Maintenance (CBM) is often the most effective. Efficiently

determining the health status of a monitored device, in such

context, is a crucial goal. Prognostics and diagnostics applied

to sensor data aim at determining such system health, by

exploiting anomalies in the data. A data-mining-technique

overview, among those belonging to the anomaly detection

approaches, is provided in [10]. They are devised to exploit

artificial neural networks in large systems to effectively predict

their health. Prognostics also includes the estimation of the

Remaining Useful Life (RUL) indicator. In [11] a deep-

belief network ensemble method with multiple objectives is

presented for performing RUL estimation. Similarly, in [12]

a neural-network prognostics model is proposed to support

industrial maintenance scheduling. The failure probabilities are

computed from actual equipment measurements by means of

a logistic regression approach. Such measurements are then

routed to a prognostics model to predict failure conditions and

finally to estimate RUL.

A further issue to address is data quality. A method

for improving data quality in diagnosing the health of de-

vices and production equipment is proposed in [13]. First,

a visualization-based grouping, exploiting the dissimilarity

spectrum, is performed on critical measurements, which are

then clustered, and finally evaluated in terms of their fitness

and separation with each other. An outlier-detection visual

assessment is also presented to identify outliers in the data.

The proposed iSTEP engine enhances the state of the

art by (i) defining an integrated platform for both the data

management and the predictive analytics; (ii) providing a

scalable and flexible general-purpose approach, able to fit most

Industry 4.0 use cases, as provided by the industrial partners

we worked with; (iii) introducing a self-tuning approach for

the predictive maintenance block and an automatic feature en-

gineering phase, both centered around human interpretability,

thus allowing domain experts to better exploit the machine

learning models in their specific context without deep knowl-

edge of the data mining techniques.

III. THE ISTEP ARCHITECTURE

Figure 1 depicts the building blocks of the proposed

engine and their functional connections. iSTEP (integrated

Self-Tuning Engine for Predictive maintenance) exploits data

stream processing jointly with machine learning algorithms to

perform two main tasks:

• factory/production-line monitoring, and

• self-tuning predictive maintenance

by collecting, managing, analyzing and visualizing data of

interest in an Industry 4.0 manufacturing plant.

The first task aims at generating informative dashboards

containing Key Performance Indicators (KPIs) computed in

real-time on data collected from production lines. The second

task, instead, analyzes manufacturing data streams to predict

possible failures, hence preventing production line stops. To

this aim, a prediction model is built on historical data by means

of machine learning algorithms. iSTEP introduces a self-tuning

strategy to automatically configure and select the optimal

machine learning algorithm, together with an automatic feature

engineering technique.

To actually monitor the whole production process, the data

collection block of iSTEP is designed to reliably routing

virtually unlimited sensor and log data from heterogeneous

sources at different rates. We named such block event hub,

since, in the predictive maintenance context, the incoming data

typically describe events of interest. The event hub collects and

routes huge amounts of data in real time avoiding information

loss. It is also able to apply basic pre-processing rules, such as

filters and test conditions on single events or on small windows

of recent buffered data.

Fig. 1: Building blocks of iSTEP

Data from the event hub is then routed to the main process-

ing blocks of iSTEP: the factory monitoring and the self-tuning

predictive maintenance blocks.

A. Factory monitoring

We identified two operational roles of the iSTEP engine

interested in factory monitoring: (i) production managers and
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(ii) head of the production shift. Production managers are

mainly interested in manufacturing productivity over time with

the aim of guaranteeing an optimal level of production. They

are also interested in assessing the conceptual and real aspects

that may contribute to factory inefficiency as health of devices

and production equipment. The heads of the production shift

are mainly interested in locally and promptly assessing the

overall equipment effectiveness to immediately react to possi-

ble sudden issues causing production line inefficiencies.

To this aim, iSTEP provides a real-time monitoring of

KPIs such as the OEE (Overall Equipment Effectiveness).

OEE is a standard indicator for measuring manufacturing

productivity. It identifies the ratio of productive manufacturing

time. An OEE score of 100% means that the manufacturing

line is producing at maximum speed (100% performance)

only good parts (100% quality), with no interruptions (100%

availability). OEE allows to uncover insights on how to

improve the manufacturing process, hence becoming a best-

practice measurement in manufacturing, since it is the single

best metric for improving the productivity of manufacturing

equipment (i.e., eliminating waste) and identifying losses.

The KPI computation block receives data collected by the

event hub on the overall monitored plant or selected production

lines and equipment. Given a buffer with the latest collected

data, metrics of interest are derived and computed, updating

related dashboards and possibly triggering user-defined alerts.

B. Self-tuning and transparent predictive maintenance

The aim of the predictive maintenance block is two-fold:

(i) building a transparent prediction model based on historical

data by means of machine learning algorithms, and then

(ii) applying such model in real time to new incoming data

streams, to identify possible failures. It consists of three

parts: (1) feature engineering, (2) model building, and (3)

maintenance prediction.

1) feature engineering: The feature engineering block de-

rives relevant static features from the most recent window of

the input data time series, supporting the predictive mainte-

nance goal. Among the many choices and challenges we faced

in this crucial task, an often under-evaluated requirement is

the human-readability of both the extracted features and the

predictive model, a requirement also known as transparency.

The understanding of the reasons for a possible failure and

the link with the originally collected data is of paramount

importance for the industries. Apparently in contrast with the

academic quest for top prediction accuracy, often industrial

partners prefer lower accuracy but more descriptive models,

since such property translates into an actionable business

advantage with respect to competitors. Hence, the set of static

features extracted from a data window (i.e., the time series of

the latest N measurements for each variable or a time-based

slot of recent data) are the following: noitemsep

• linear regression intercept and slope,

• max value, min value, max absolute value,

• sum of values (the integral, or evidence accumulation),

• sum of values weighted by recency (memory simulation).

Such features are meant to capture the meaning of most

signals monitored in Industry 4.0. Since they typically present

signs of performance degradation towards the failure event,

the feature engineering generates time-series trend indicators

such as the slope, and tracks the key values such as min and

max. Furthermore, since sequences of events indicating per-

formance degradation tend to be predictors of more probable

or imminent failures, we track the sum of the values in the

time window to capture such effects.
Results of the feature engineering are saved to the long-

term storage database, ready to be used to train new updated

models.
2) Model building: On a batch schedule, the model building

block is executed on historical data. Historical data consist of

(i) the original measurements, (ii) the additionally extracted

features for each time window, and (iii) the corresponding

class labels (failure presence o absence). All data are linked

with an object of interest, the device or piece of equipment

that can fail and whose predictive maintenance is desired.
The model building block executes three preliminary steps,

intended to address very common issues in Industry 4.0

contexts.

• Feature filtering, by discarding those having a high num-

ber of unacceptable values, e.g., null or missing values,

out-of-range measurements.

• Feature ranking, to guide the understanding of feature

contributions to the prediction task.

• Down-sampling the non-failure class, since the failure

class is almost always under-represented by order of

magnitudes.

Feature ranking is approached by computing the correlation

matrix of all couples of the original measurement variables,

and sorting the features by increasing average correlation

score. The hypothesis is that a variable which is loosely

correlated with the others, on average, brings new information

to the problem, hence it can be useful. On the contrary,

many variables are often highly correlated, hence they can be

discarded as redundant, simplifying the model training phase.
Down-sampling the non-failure class exploits re-sample

without replacement until a selected ratio between the two

classes is reached (e.g. 1:10). Finally, only the extracted

features and the class labels are used to train the model,

discarding the original time-series of measurements, hence

enabling the full range of classifiers to be exploited, since most

of them do not typically address time series data by design.
The results presented by the system to industrial end-users

are two-fold. The self-tuning approach provides an automatic

overview of the predictive performance of a wide set of

classification algorithms, whose parameters are automatically

optimized by a grid-search, hence automatically identifying

the best one and its performance gain with respect to the

others. Prediction performance is evaluated by exploiting a 5-

fold stratified cross-validation, and the training dataset defaults

to the full historical data, even if shorter recent periods

can be selected to address replacements and upgrades of

equipment, devices, or other major production changes. The
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trend of the prediction performance (F-measure, precision,

and recall of the failure class) is presented for increasing

numbers of selected features according to the feature ranking,

hence providing insights on the relevance of including such

features in the model building phase. All steps are designed

to provide an understandable model for humans, also known as

model transparency, hence the choice of interpretable machine

learning algorithms such as Random Forest (RF) [14], Logis-

tic Regression (LR) [14], Support Vector Machines (SVM)

[14], and Gradient-Boosted Tree (GBT) [15]. Furthermore,

the performance trend for different number of features is

particularly appreciated by industrial partners because drives

a better understanding of the phenomena under study.

3) Maintenance prediction: The prediction block applies

the prediction model, trained in the model building phase, to

new incoming data streams. Incoming data are pre-processed

by the feature engineering block. The output is the prediction

result, whose aim is to anticipate a failure event in the near

future. Results are sent to the dashboard collecting all outputs

from both the monitoring and the predictive blocks.

IV. THE ISTEP TECHNOLOGICAL SOLUTION

To translate the system described in the paper into an actual

implementation, we collected requirements during research

activities and experiences with real-world industrial contexts,

from mechanical to automotive, from automation to food

production. In the following, we provide rationale for the

design and development choices taken to address the needs

of the modern manufacturing industries.

First of all, generally desirable requirements are reliability,

availability, scalability, and manageability. Popular technolo-

gies exist that reasonably guarantee such properties. The latter

requirements are addressed by deploying the whole architec-

ture in a containerized environment, drastically reducing the

architectural management complexity, both in development

and production phases. Containerized blocks are typically

horizontally scalable, as they can be easily instantiated dynam-

ically by design. The possibility of having multiple disposable

containers running at the same time also provides availability

and reliability at the architectural level, both on-premises

and in cloud environments. In our approach, each block is

encapsulated into a Docker container [16], hence resulting

into a flexible loosely-coupled architecture: the event hub, the

factory monitoring block, the predictive maintenance block,

the long-term storage, and the dashboard are deployed in

separate containers and can be instantiated simultaneously,

hence providing horizontal scalability.

The event hub must be able to collect, apply basic pre-

processing rules, and route huge amounts of data in real time

avoiding information loss. To this aim, we exploit Apache

Kafka [17], a horizontally scalable, fault-tolerant, advanced

message broker for real-time applications with very high

throughput and a long-standing widespread adoption.

Both the factory monitoring and the predictive maintenance

blocks are based on Apache Spark [18] and its streaming

extensions. Spark Streaming is a state-of-the-art horizontally-

scalable high-throughput fault-tolerant framework for soft real-

time Big Data analysis. Spark also provides a parallel machine

learning library, MLlib [19].

The storage component is built on top of Apache Cassan-

dra, a column oriented NoSQL database. Cassandra is very

popular for its throughput scalability [20], especially for write

operations, which represent the specific challenge of Industry

4.0 data collection.

V. EXPERIMENTAL RESULTS

The experimental section is organized as follows. Section

V-A describes the dataset used for the experiments, Section

V-B presents the experimental goals and the performance

metrics, Section V-C reports the software and hardware setup,

Section V-D and Section V-E discuss the prediction perfor-

mance for different algorithms on the full dataset and on

the quarterly datasets respectively, Section V-F evaluates the

benefits of the self-tuning block, Section V-G assesses the

impact of different number of features, and Section V-H

explores the effect of different training sets.

A. Dataset

Experiments have been performed on a public dataset [21]

with very large historical data and failure labels. It consists of

90 attributes describing the SMART hard-drive measurements,

and corresponding device failures, for 125627 hard disks, over

9 quarters from 2016 to 2018-Q1. The dataset presents 3323

failures among a total number of 63892896 records, hence

leading to a very unbalanced failure class representing only

0.005% of the data. Thanks to such extremely unbalanced class

representation, the dataset can effectively simulate predictive

maintenance scenarios in real-world industry 4.0 contexts.

Even if the dataset collects a set of 90 measurements from

each device every day, hence the throughput is not properly

simulated, such challenge is not addressed by the current

experimental session, because the scalability of the Kafka-

based event hub and the Apache Streaming framework is

widely tested in state-of-the-art publications.

The features selected as non-redundant and less correlated

are the 13 attributes reported in Table I. For each feature of

those 13, the feature engineering is executed, generating a

total of 65 features as input to the model building. Extracted

features are computed over windows of 3 months.

B. Goals and performance metrics

Experiments evaluate the capability of the system to support

industrial partners in effectively performing the predictive

maintenance task, by addressing many of their popular ques-

tions:

• Which is the best algorithm to effectively predict fail-

ures? How much advantage in performance does the best

algorithm provide with respect to the others? Should I

change algorithm over time?

• How does the number of features impact on prediction

performance? and which are the selected features?
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TABLE I: Selected features sorted by correlation score.

feature correlation score
smart 5 raw 0.002
smart 3 raw 0.053
smart 199 raw 0.079
smart 10 raw 0.082
smart 4 raw 0.082
smart 194 raw 0.095
smart 1 raw 0.101
smart 12 raw 0.106
smart 197 raw 0.136
smart 198 raw 0.136
smart 193 raw 0.145
smart 192 raw 0.163
smart 9 raw 0.184

• How many historical data should be used to train the

model? and how does this choice affect the prediction

performance?

Prediction performance [14] is defined in terms of precision

(i.e., the ratio of true failures with respect to all predicted

failures), recall (i.e., the ratio of true predicted failures with

respect to all true failures in the test set), and F-measure (also

known as F1 score, i.e., the harmonic mean of precision and

recall) of the failure class. High precision indicates that, when

a failure is predicted by the model, then it is highly probable to

be actually happening. On the contrary, low precision indicates

that the model predicts a lot of false failures (type I errors):

such events in real-world contexts cause human end users to

ignore the model predictions. High recall indicates that the

model can correctly predict most failures, or in other words,

that few actual failures happen without the model having

predicted them. On the contrary, low recall indicates that there

are many actual failures happening without the model being

able to predict them: such behavior leads to useless predictive

maintenance. Depending on the specific application context,

precision or recall can assume different importance. However,

they are often considered equally important, hence using the

F-measure allows to consider both in a single metric.

C. Hardware, software and timing

Experiments have been performed on an Intel Core i7

machine with 32 GB of RAM running Ubuntu 16.04 and

a cluster of two nodes configured with Apache Kafka 1.0,

Spark (and MLlib) 2.2.0, Docker 17.09, and Cassandra 3.11.

Provided such resources, the time required to build the models

on the full dataset ranges from the 137 seconds of the LR, to

the 307 seconds of the GBT classifier.

D. Algorithm comparison on the full dataset

The algorithms included in the experimental comparison are

selected among those available in the Apache Spark MLlib

[22] library: Random Forest (RF) [14], Logistic Regression

(LR) [14], Support Vector Machines (SVM, specifically the

linear SVC variant) [14], and Gradient-Boosted Tree (GBT)

[15].

Depending on the specific manufacturing application under

monitoring, a prediction performance metric among precision,

TABLE II: Prediction performance on the full dataset.

algorithm precision recall F-measure
RF 0.63 0.66 0.64
LR 0.55 0.52 0.54

SVM 0.35 0.50 0.41
GBT 0.60 0.82 0.69

recall, and F-measure is selected to be optimized by the self-

tuning block. Considering a model trained on the overall

dataset from 2016 to 2018, evaluating its performance with

a 5-fold stratified cross validation, and a down-sampling ratio

of 1:10, if the precision metric is selected for the self-tuning

block, the RF algorithm is selected by iSTEP to be applied,

since it reaches the highest precision value (0.63, see Table II).

Instead, GBT would have been selected based on recall (0.82)

or F-measure (0.69). A detailed discussion on the performance

gain provided by the self-tuning feature of iSTEP is provided

in Section V-F.

From an operational point of view in the manufacturing

context, a recall of 0.82 means that more that 80% of the

failures can be predicted. If predicting a failure triggers a

maintenance operation preventing a production line stop, then

80% of the costs due to those sudden stops can be saved.

Precision is lower than recall, however approximately 60%

of the alerts predicting a failure actually corresponds to true

failures. This means that if all predicted failures trigger a

maintenance intervention, approximately 40% of the costs will

be wasted. However, typically the costs for sudden production

stops (whose savings are estimated to be 80%) are much higher

than maintenance intervention (40% wasted), and the latter

are currently scheduled based on time, hence being already

performed in excess.

E. Algorithm comparison on quarterly datasets

Fig. 2: F-measure for each algorithm for each quarter.

In manufacturing plants, the production process, line, or

equipment often change over time, hence it is important to

re-train the model from time to time, so that the model fits

the actual context. To better investigate the effect of such re-

training, we divided the dataset into quarters and analyzed the

performance of each algorithm for each quarter, as if they

were separate datasets (5-fold stratified cross-validation for

each quarterly dataset). Results are reported in Table III for

the F-measure, in Table IV for precision, and in Table V for
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TABLE III: Failure class prediction, F-measure.

Algorithm
Dataset GBT LR SVM RF
2016 Q1 0.74 0.53 0.48 0.62
2016 Q2 0.74 0.56 0.59 0.66
2016 Q3 0.62 0.61 0.57 0.59
2016 Q4 0.68 0.60 0.49 0.67
2017 Q1 0.68 0.50 0.40 0.67
2017 Q2 0.72 0.54 0.38 0.71
2017 Q3 0.63 0.53 0.36 0.67
2017 Q4 0.55 0.51 0.37 0.59
2018 Q1 0.55 0.50 0.36 0.59
Average 0.66 0.54 0.44 0.64

TABLE IV: Failure class prediction, precision.

Algorithm
Dataset GBT LR SVM RF
2016 Q1 0.66 0.54 0.44 0.62
2016 Q2 0.63 0.55 0.52 0.58
2016 Q3 0.50 0.52 0.45 0.48
2016 Q4 0.57 0.57 0.40 0.63
2017 Q1 0.56 0.46 0.31 0.58
2017 Q2 0.62 0.64 0.35 0.70
2017 Q3 0.53 0.64 0.31 0.72
2017 Q4 0.44 0.55 0.30 0.60
2018 Q1 0.43 0.54 0.33 0.68
Average 0.55 0.56 0.38 0.62

recall. A better glance of the F-measure results reported in

Table III is provided in Figure 2.

We note that different quarters lead to changes in (i) the

algorithm performance ranking, with GBT being the best for

six quarters, from 2016 Q1 to 2017 Q2, whereas RF is the

best for the last 3 quarters, and also in (ii) the variance of

the results: the difference between the best and worst result

of each algorithm is 0.19 for GBT (mean 0.66), 0.11 for LR

(mean 0.54), 0.23 for SVM (mean 0.44), and 0.12 for RF

(mean 0.64). RF not only provides generally high performance

(ranked second overall), but also the most stable results. SVM,

instead, yields to low performance and also highly variable

results.

Failures are generally harder to be modeled in recent

quarters (2017 Q4 and 2018 Q1), as if the reliability of the

hard disks had increased, hence leading to more failures due to

random or external causes. In 2017 (Q1-Q2-Q3), with respect

to 2016, we notice that the best algorithms (GBT and RF)

reach high performance in contrast with a decrease of the

worst ones (LR and SVM), whereas in 2016 Q3 almost all

algorithms reach very similar performance.

Precision (Table IV) and recall (Table V) results are quite

straightforward: GBT is always the best in recall, whereas LR

is often the best for precision. The only exceptions are in Q1

and Q2 of 2016, when GBT is the best in both precision and

recall, and in Q3, when LR is the best for precision; the latter

being the only result with a best algorithm different from GBT

and RF.

F. Self-Tuning Gain

Traditional approaches of predictive maintenance tend to

perform a thorough study of historical data and then provide

TABLE V: Failure class prediction, recall.

Algorithm
Dataset GBT LR SVM RF
2016 Q1 0.86 0.53 0.54 0.63
2016 Q2 0.90 0.59 0.68 0.78
2016 Q3 0.82 0.73 0.80 0.78
2016 Q4 0.85 0.65 0.62 0.71
2017 Q1 0.86 0.56 0.58 0.80
2017 Q2 0.87 0.47 0.44 0.74
2017 Q3 0.80 0.45 0.45 0.63
2017 Q4 0.75 0.48 0.47 0.60
2018 Q1 0.76 0.48 0.43 0.53
Average 0.83 0.55 0.56 0.69

TABLE VI: STG comparison for each quarter, F-measure.

dataset best algorithm F-measure STG max STG min
2016 Q1 GBT 0.74 0.26 0.12
2016 Q2 GBT 0.74 0.17 0.08
2016 Q3 GBT 0.62 0.04 0.01
2016 Q4 GBT 0.68 0.19 0.01
2017 Q1 GBT 0.68 0.28 0.01
2017 Q2 GBT 0.72 0.34 0.01
2017 Q3 RF 0.67 0.31 0.04
2017 Q4 RF 0.59 0.22 0.04
2018 Q1 RF 0.59 0.23 0.04

a solution consisting of a specific algorithm. However, as we

have seen in Section V-E, changes in manufacturing conditions

not only require a model re-training over time, but also

lead to different best algorithm options. For this reason, we

investigate the improvement of dynamically selecting the best

algorithm at every model re-training, both on the full dataset

and quarterly, thanks to the self-tuning feature of iSTEP. From

results reported in Table II on the full dataset, we noticed

that, with respect to an a-priori choice of a fixed classification

algorithm, the self-tuning approach leads to improvements of

up to 0.28 in precision, 0.32 in recall, and 0.28 for the F-

measure. We refer to such improvement as STG (Self-Tuning

Gain): STGmin is the difference between the best performing

algorithm and the second best, STGmax is the difference

between the best performing algorithm and the worst, given

the same dataset.

Table VI reports the STGmin, STGmax, and the best

algorithm selected by iSTEP based on the F-measure metric,

for each quarterly dataset. Dynamically selecting the best

algorithm can provide up to 0.34 improvement in F-Measure

performance with respect to the worse algorithm, which

is almost 50% of the 0.72 best result (2017 Q2 dataset).

However, the worst algorithm used by the STGmax is less

probably chosen, hence STGmin is more meaningful: gains

vary from a negligible 0.01 (in 4 quarters) up to 0.12; in

5 quarters STGmin is higher than 0.04. Generally, we can

conclude that self-tuning the predictive maintenance approach

to dynamically select the best algorithm at each re-training

is expected to provide tangible savings in costs, as F-measure

improvements are in the range 0.04-0.30, which means up to a

60% improvement with respect to the average 0.57 F-measure,

across all algorithms.
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G. Number of features

The performance trend for different numbers of features is

of great interest to industrial partners, since it provides a direct

link among the results and the original features contributing

to such results, thus disclosing possible interpretations of the

failures.

In Figure 3, the F-measure trend is reported considering

the best algorithms, GBT and RF, for an increasing number

of features1 as sorted in Table I. Each line corresponds to a

different dataset, for which a 5-fold cross validation has been

used to compute the resulting F-measure. We selected two

full-year datasets, 2016 and 2017, denoted by the non-dashed

lines, since they represent the general trend of most quarters.

Then we added two specific quarterly datasets, 2017 Q1 and

2018 Q1, denoted by the dashed lines, which showed different

behaviors than the average.

Both algorithms present a general behavior (non-dashed

lines, yearly datasets) with a two-step improvement: the first

noticeable increase in performance is shown at 5 features for

GBT and 6 features for RF; then a plateau is present until 8

features for both GBT and RF. Above 8 features GBT slightly

increases its performance, whereas RF presents a new plateau

until 12 features. Hence, in general, the first 9 features are

very relevant for the modeling of the failures in such datasets.

Deviations from the described behavior are reported by the

model of the 2017 Q1 failures, reaching its highest results

with only 6 features, both for GBT and RF, above which no

significant improvement is made. On the contrary, failures in

the 2018 Q1 dataset are much harder to model: GBT has an

almost linear slope of performance increase, well below the

average absolute results, and RF requires at least 9 features,

with a reduced 6-feature step.

H. Training dataset comparison

The common academic experimental design to evaluate the

prediction model performance consists of a stratified cross-

validation of the given dataset into folds of test and training,

which is the approach applied in all other experiments of the

paper. However, in real-world contexts, the training data set

consists of all or part of the historical data, whereas the test

dataset is represented by the new incoming data. Hence, we

now address the question of which dataset is the best training

set for the predictive maintenance goals. To address this issue,

we consider two test sets: (i) the worst performing dataset,

unanimously for all algorithms, 2018 Q1, and (ii) a relatively

easy dataset, 2017 Q1, as discussed in Section V-G. Then

we compare the predictive performance by exploiting the two

best-performing algorithms (GBT and RF) on two different

training sets: (i) the previous quarter and (ii) the previous year,

with respect to the selected test set. The previous month is

meant to be a model of recent failures, which might be more

similar to the new ones. On the contrary, the full past year

1The number of features is considered with respect to the original dataset,
before applying the feature engineering.

TABLE VII: Different training sets, GBT algorithm.

Test Train Recall Precision F-measure

2017 Q1
2016 Q4 0.85 0.11 0.19
2016 0.73 0.46 0.56

2018 Q1
2017 Q4 0.55 0.20 0.29
2017 0.68 0.20 0.31

TABLE VIII: Different training sets, RF algorithm.

Test Train Recall Precision F-measure

2017 Q1
2016 Q4 0.59 0.70 0.64
2016 0.50 0.86 0.63

2018 Q1
2017 Q4 0.41 0.70 0.52
2017 0.43 0.80 0.56

model collects more data but might include some ”old” failures

that do not represent the current scenario.

Table VII and Table VIII report results with the GBT and

RF classifiers respectively. We notice that there is no clear

choice between the year-long dataset or the shorter quarter

dataset. GBT yields better results with the larger dataset,

whereas RF has a mixed result. In a real-world setting,

contextual metadata such as changes in equipment, production

line composition, and other structural-changing tasks should be

tracked to effectively trigger a model rebuilding. A common

trend is the lower precision of smaller datasets., whereas recall

and F-measure do not exhibit any specific trend.

VI. CONCLUSIONS

The paper presented iSTEP, an integrated Self-Tuning

Engine for Predictive maintenance, which is horizontally-

scalable, fault-tolerant, and based on containerized environ-

ments. Experimental results showed the contributions of spe-

cific building blocks to the prediction performance, the trends

for different number of features, the performance impact for

different datasets and algorithms. The iSTEP engine showed

very promising results and stimulated the interest of different

manufacturing companies.

Future works will address (i) the evaluation of different

down-sampling ratios for the non-failure class, (ii) improve-

ments to the feature engineering component, e.g., higher-order

regressions, and (iii) more complex self-tuning strategies.
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Fig. 3: F-measure for different numbers of features, GBT (left) and RF (right) algorithms.
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